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Abstract: The task concept is a widely used pattern in reasoning systems. Unified Problem-
solving Method Development Language (UPML) is a framework allowing building 
libraries of generic problem solving components. This paper proposes several 
improvements in this framework based on observations when modeling a concrete 
application. It starts from describing in UPML an application intended to solve nonlinear 
equation systems and identifies places where extensions in the language are of real help. 
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1. Introduction 

The AI community is working for a long time in the area of knowledge 
representation and their reutilization. The two main directions in the history of this 
domain are the functional approach and the conceptual approach.  

Functionally manipulating knowledge is based on the observation that tools should 
be adapted to the knowledge structure instead of modeling knowledge based on 
the available tools. The main exponent of this approach is Chandrasekaran. He 
also stressed the fact that there exists control knowledge with similar structure for 
various domains of applications like medicine and technique and came up with the 
notion of generic tasks [3].   A generic task corresponds to a common problem and 
the manner it is solved. Its generic character is based on the possibility to use that 
task to solve complex problems in various domains. Sample generic tasks are: 
hierarchical classification, hypothesis matching, abductive assembling, 
hierarchical design by selection and refining [3]. Researches in this area include 
construction of various languages for describing generic tasks: CSRL [2], DSPL 
[1], HYPER [10], PEIRCE [17]. 

The next step was the notion of task structure that introduces a clear separation 
between tasks and the methods to perform the tasks. Since a method may refer 



other tasks (sub-tasks) in its body, a task structure is better viewed as a tree of 
tasks, methods and sub-tasks which are recursively applied until the elementary 
tasks are finally applied on available knowledge [4]. 

Task structures represent both a technique to analyze systems and a way to 
implement practical systems using specific architectures. It is worth pointing out 
some researches in this area like TIPS [16] or SOAR task extension [11].  

If the functional modeling tries to identify tasks and the methods to realize them, 
the conceptual approach focus on identifying different conceptual levels in order 
to model the knowledge. The most important methodology developed in the area 
is the KADS architecture, fully described in [19]. In KADS one identifies several 
models used to represent the knowledge. The most relevant for the purpose of this 
paper is the model of expertise which is further divided in several layers: domain, 
inference, tasks. The language to describe these layers is (ML)2 [9]. This language 
is heavily based on logic (extensions of the first order logic or modal logic), thus it 
requires some kind of logical expertise from the user to be used.  

The Unified Problem-solving Method Development Language (UPML) described 
in [6] is based on the researches on KADS and KARL [12]. It aims to preserve the 
KADS structure of the model of expertise and also to simplify the description 
language as KARL does.  

The remaining of this paper focuses on modeling the NESS (Non-linear Equations 
System Solver) application [14] in terms of the UPML language. It starts by 
shortly presenting the components of the UPML followed by the description of 
NESS in terms of these components. This process allows for the identification of 
three possible extensions of the UPML facilitating the NESS description. 

2. Extending the UPML 

2.1 UPML Description 

One of the starting points of UPML consists in the identification of the essential 
components involved in the development of a knowledge reasoning system. There 
are six components that represent the basic terms for the UPML language: 

- Task: it defines the problem to be solved. The task attributes include a 
textual description of the task goal, a list of ontologies providing the task 
terminology, a logical statement describing the task goal, a set of terms 
representing the task input, a set of terms representing the task output, a 
set of statements about dynamic input restricting the valid inputs of the 
task (pre-conditions) and another set of statements about task knowledge 
intended to show the conditions when the task goal could be reached 
(assumptions). 



- Problem Solving Method (PSM): it defines the reasoning process in order 
to satisfy a task. The components of PSMs are a textual description, a set 
of ontologies used for describing it, pre-conditions on input, post-
conditions on output which must hold after PSM’s execution. The input 
and the output are other attributes, together with a list of the sub-tasks 
called by this method. Complex methods also require the description of 
the control which details the way the sub-tasks are called by this method. 
A bridge (see below) associates a PSM with a task, thus a task may be 
fulfilled by several PSMs. 

- Domain Model: allows for the description of the domain knowledge 
specific to the problem. Apart from tasks and PSMs descriptions, this 
knowledge is not intended to be reusable. 

- Ontology: offers the terminology used to describe task, methods and the 
domain model. The relations between the UPML components were 
accurately modeled in environments like PROTÉGÉ II where the central 
point is the description of ontologies [5, 8]. Ontology sharing becomes a 
central issue in many areas like semantic web or multi-agent technology 
and UPML is a promising language for modeling shared reasoning 
knowledge manipulated as tasks or PSMs [15]. 

- Bridge: is an adapter [7] allowing relating architectural parts like tasks 
with the PSMs, tasks with the domain model or PSMs with the domain 
model. The purpose of this component is to map terms from different 
ontologies (the ones used to describe the related architectural parts). 

- Refiner: is another kind of adapter allowing refining architectural 
elements. It is thus possible to refine, for example, a general search 
method into a Greedy method by replacing some sub-tasks called in the 
original search method with adapted sub-tasks suited for the Greedy 
method (e.g. choosing of the next state). 

The association between tasks and PSMs is a one-to-many relation. There is a 
natural issue to be solved when solving a task: how to choose the most appropriate 
PSM from a list of candidates. UPML introduces the competence part in PSM’s 
description comprising the input and output roles specification together with pre-
conditions and post-conditions restricting the valid input and output. Discussion 
on task-PSM relation allowed us to propose two of the UPML extensions in this 
paper. 

2.2 NESS Description in UPML 

This section is intended to shortly describe the NESS (Nonlinear Equations 
Systems Solver) system [14] and to show how UPML could be used to model this 
application. 

In general, there is not a unique recipe in solving the non-linear equations systems 
(non-linear simultaneous equations) [13]. To choose a particular method one 
should take into account several external aspects: the form of the system, 



knowledge about a "good" iteration, structural characteristics (the quality of the 
Jacobian, condition number), etc. 

Sample solving methods for non-linear equations systems (NES) considered in 
NESS are the Classic Newton method, the Steffensen method, the Conjugated 
Gradient method, or Broyden methods. Any of them has particular properties like 
the convergence rate or precision.  

The overall goal of NESS is to develop an intelligent system able to assist the user 
in solving non-linear equations systems. Modeling the human expertise, the 
system must be able to automatically choose the most adequate numerical methods 
or to combine two or more numerical methods for solving non-linear equations 
systems. The system assumes coupling the symbolic and numeric calculus.  

NESS has the following more concrete goals: 

- the acquisition and the formalization of the expert knowledge like solving 
methods’ properties and their mapping on problem properties 

- the identification of problem properties of interest in further reasoning 

- the development of the solving methods base and of the corresponding 
routines library 

- the design of a task oriented formalism to model the problem solving 
reasoning 

 The figure above shows the hierarchy of tasks and PSMs modeling the NESS 
application together with the ontologies defining the problem terminology. 

From the figure it can be seen that several ontologies are used in order to define 
the problem terms. The figure shows the import relations between these 
ontologies. For example the ontology Equation Systems is imported in Nonlinear 
Equation Systems which is further imported in a more specific ontology called 
Numerical Solving of Nonlinear Equations. Another important ontology is one that 
defines the terms for iteration: Solving by Iteration which inherits from 
Approximation. The domain model is called Nonlinear System Solving and is 
related by bridges with several tasks like Iteration or Approximately Solving NES. 
Tasks are related by bridges with PSMs. For example, the Iteration task has two 
PSMs possible to realize it: Classic Newtonor the Combined method. You may 
also note that there are PSMs like NewtonIteration that can implement two tasks: 
Iteration Generation Newton and Iteration Generation Combined.  

One may also note that the IterativeSolving PSM is refined to PSMs like Classic 
Newton or Combined Method. 

There are two relations in the figure which do not pertain to the original UPML 
description. They represent enhancements proposed in this paper and they will be 
analyzed below. 
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Figure 1. The NESS hierarchy of tasks, methods and ontologies. 



 2.2.1 Choosing the PSM to Fulfill a Task 

The first new relation refers to the way the task Choosing Iterative Solving is 
linked with the Iteration task by an element of the type choosing PSM (bold 
arrow). As illustrated in the section 2.1, the UPML language includes the PSM 
competence description that, together with the ontology bridges, facilitates the 
choosing of the appropriate PSM to perform a task. An agent could choose the 
right method to apply based, for example, on the checks it can perform on the 
actual task input using the PSM precondition. It also may check the availability of 
bridges between various ontologies used to describe the PSM’s actual input. It 
results a choosing process based only on ontological knowledge. It means that a 
PSM will not be considered as the method to fulfill a task if, for example, the class 
in the ontology describing the method input in UPML description could not be 
bridged with a class in the ontology describing the task input for the actual 
problem domain. It also means that if the post-conditions of the method (described 
in UPML) assume, after the method execution, the existence of some objects 
described in the method ontology whose classes could not be matched with classes 
in the ontology describing the problem domain, the PSM is not considered for this 
task. 

In the case of the NESS problem, one can see in the figure that there are the 
Classic Newton method and the Combined method as candidates for the Iteration 
task. There are some more solving methods since there are many mathematical 
methods to iteratively solve a NES. Apart from the type of filtering described 
above, NESS is willing to make a complex choice based on methods properties 
available as domain knowledge (not as PSMs preconditions). NESS is planning to 
use an expert system for making this decision since this is a complex task and 
deserves a special treatment. It is exactly the purpose of the method-chooser-
task specification item in PSM’s description to assign a task for choosing the 
PSM to solve the Iteration task. Part of the UPML definition for the Iteration task 
is presented below: 

task Iteration 
  pragmatics 
   General iteration task  
  ontology 
    Solving by Iteration 
  specification 
    roles 
      input function; input initialIteration; input 
error; input steps; 
      output iterations; 
    method-chooser-task 
      ChoosingIterativeSolving(function, 
initialIterations) 
    goal 
      task(input function; input initialIterations;  

input error; input steps; 



            output iterations)  →
          newIterations(iterations, 

function, initialIterations, error, steps)  
⊂

∧
    (initialIterations  iterations); 

    preconditions 
          steps > 0; 
The ChoosingIterativeSolving task must reason about PSMs based on the domain 
knowledge. As a consequence, it must import the UPML ontology and the 
developer of the system must create bridges between the domain model and the 
UPML ontology. The input of this task is intended to be the actual input of the 
task it is linked with. The output of the task is an object of class PSM according to 
the UPML ontology.  

2.2.2 PSM’s Precondition Satisfaction 

The second relation introduced in this paper is reflected in the link between the 
task Initial Iteration Generation and the PSM NewtonIteration (arrow with bullet). 
The task in the relation is called precondition task because its role is to satisfy a 
PSM’s precondition if that precondition is false. The reason to add this new 
construct for our problem is based on the necessity to provide initial iteration(s) 
for a NES PSM. A second factor affecting this decision is related to the fact that 
the NewtonIteration PSM may be or may be not called with the initial iterations 
already specified. For example, the task Iteration Generation Combined may be 
satisfied using the NewtonIteration PSM, but since it is called in a while loop in 
the CombinedMethod the initial iteration already exists for iterations after the first 
call of Iteration Generation Combined. The code extract showing the new notation 
is presented below in the preconditions section: 

problem solving method NewtonIteration 
  pragmatics 
    Iteration generation based on a Newton process 
  ontology 
    Iterative Solving 
  competence 
    roles 
      input fct; input iterations; output newIteration; 
    preconditions 
    iterations <> Ø |  
      iterations := InitialIterationGeneration(fct, 
‘ClassicNewton’); 
    subtasks 
      Multiply, Invert, JacobianCalculus; 
    postconditions 
 … 
 
 



2.2.3 Tasks with Pre/Post-tasks 

There is a third enhancement proposed in this paper, whose purpose from NESS is 
not reflected in the figure. However, there is a case where it may be used as 
illustrated below.  

In some situations, an alternative approach to the adding of the precondition 
satisfaction task (see above) is to assure that the Initial Iteration Generation task is 
executed before the task intended to be realized by the NewtonIteration PSM. In 
the NESS application, an appropriate choice would be to mark this task as a pre-
task of the Iteration task. Symmetric considerations allow for introducing post-
tasks for a specified task. Thus, this paper proposes explicitly adding the notions 
of post/pre tasks in UPML task structure as a new UPML relation, like 
exemplified below: 

task Iteration 
  pragmatics 
    General iteration task  
  ontology 
    Solving by Iteration 
  specification 
    roles 
      input function; input initialIteration; input 
error; input steps; 
      output iterations; 
    method-chooser-task 
      ChoosingIterativeSolving(function, 
initialIterations) 
    pre-tasks 
 InitialIterationGeneration 
    post-tasks 
 PostIterationTask1;PostIterationTask2    
    goal 
 … 
    preconditions 
 … 

The usefulness of the notions of pre/post tasks is also proved by some other task 
based environments like SCARP [20]. The paper [18] uses this relationship in a 
context where several agents perform tasks and there were restrictions on the task 
ordering. 

Conclusions 

As presented in the previous section, three new elements were proved to be useful 
to be included in UPML for the benefits of the NESS application: a task for 
choosing PSMs for another task, precondition satisfying task and the pre/post 
tasks. The first allows for enhancing the process of choosing a PSM to satisfy a 
task by using domain expertise. It is very valuable in this mathematical context 



since there is complex domain knowledge to be used in the choosing process apart 
from the ontological matching. The second allows postponing the elimination of a 
PSM in the process of selection of the method to fulfill a task by specifying an 
alternative way to fulfill a PSM’s precondition and the third new proposed 
element represents a way to make explicit an order relation between tasks. 

The present work was prepared in order to model the task reasoning in multi-agent 
systems. Of interest in such contexts would be to model the execution of a task in 
agents’ local data environment described using some appropriate domain model. 
This remains as a future work for us to propose UPML extension with appropriate 
constructs. 
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