
Extending the Unified Problem-solving Method
Development Language

Calin Sandru* and Viorel Negru**

*WebQuote.com SRL Timisoara, C. Brediceanu, 8, Timisoara, Romania,
csandru@webquote.com
**West University of Timisoara, Bd. V. Parvan 2, Timisoara, Romania,
vnegru@info.uvt.ro

Abstract: The task concept is a widely used pattern in reasoning systems. Unified Problem-
solving Method Development Language (UPML) is a framework allowing building
libraries of generic problem solving components. This paper proposes several
improvements in this framework based on observations when modeling a concrete
application. It starts from describing in UPML an application intended to solve nonlinear
equation systems and identifies places where extensions in the language are of real help.

Keywords: task reasoning, UPML, ontology, modeling, numerical analysis

1. Introduction

The AI community is working for a long time in the area of knowledge
representation and their reutilization. The two main directions in the history of this
domain are the functional approach and the conceptual approach.

Functionally manipulating knowledge is based on the observation that tools should
be adapted to the knowledge structure instead of modeling knowledge based on
the available tools. The main exponent of this approach is Chandrasekaran. He
also stressed the fact that there exists control knowledge with similar structure for
various domains of applications like medicine and technique and came up with the
notion of generic tasks [3]. A generic task corresponds to a common problem and
the manner it is solved. Its generic character is based on the possibility to use that
task to solve complex problems in various domains. Sample generic tasks are:
hierarchical classification, hypothesis matching, abductive assembling,
hierarchical design by selection and refining [3]. Researches in this area include
construction of various languages for describing generic tasks: CSRL [2], DSPL
[1], HYPER [10], PEIRCE [17].

The next step was the notion of task structure that introduces a clear separation
between tasks and the methods to perform the tasks. Since a method may refer

other tasks (sub-tasks) in its body, a task structure is better viewed as a tree of
tasks, methods and sub-tasks which are recursively applied until the elementary
tasks are finally applied on available knowledge [4].

Task structures represent both a technique to analyze systems and a way to
implement practical systems using specific architectures. It is worth pointing out
some researches in this area like TIPS [16] or SOAR task extension [11].

If the functional modeling tries to identify tasks and the methods to realize them,
the conceptual approach focus on identifying different conceptual levels in order
to model the knowledge. The most important methodology developed in the area
is the KADS architecture, fully described in [19]. In KADS one identifies several
models used to represent the knowledge. The most relevant for the purpose of this
paper is the model of expertise which is further divided in several layers: domain,
inference, tasks. The language to describe these layers is (ML)2 [9]. This language
is heavily based on logic (extensions of the first order logic or modal logic), thus it
requires some kind of logical expertise from the user to be used.

The Unified Problem-solving Method Development Language (UPML) described
in [6] is based on the researches on KADS and KARL [12]. It aims to preserve the
KADS structure of the model of expertise and also to simplify the description
language as KARL does.

The remaining of this paper focuses on modeling the NESS (Non-linear Equations
System Solver) application [14] in terms of the UPML language. It starts by
shortly presenting the components of the UPML followed by the description of
NESS in terms of these components. This process allows for the identification of
three possible extensions of the UPML facilitating the NESS description.

2. Extending the UPML

2.1 UPML Description

One of the starting points of UPML consists in the identification of the essential
components involved in the development of a knowledge reasoning system. There
are six components that represent the basic terms for the UPML language:

- Task: it defines the problem to be solved. The task attributes include a
textual description of the task goal, a list of ontologies providing the task
terminology, a logical statement describing the task goal, a set of terms
representing the task input, a set of terms representing the task output, a
set of statements about dynamic input restricting the valid inputs of the
task (pre-conditions) and another set of statements about task knowledge
intended to show the conditions when the task goal could be reached
(assumptions).

- Problem Solving Method (PSM): it defines the reasoning process in order
to satisfy a task. The components of PSMs are a textual description, a set
of ontologies used for describing it, pre-conditions on input, post-
conditions on output which must hold after PSM’s execution. The input
and the output are other attributes, together with a list of the sub-tasks
called by this method. Complex methods also require the description of
the control which details the way the sub-tasks are called by this method.
A bridge (see below) associates a PSM with a task, thus a task may be
fulfilled by several PSMs.

- Domain Model: allows for the description of the domain knowledge
specific to the problem. Apart from tasks and PSMs descriptions, this
knowledge is not intended to be reusable.

- Ontology: offers the terminology used to describe task, methods and the
domain model. The relations between the UPML components were
accurately modeled in environments like PROTÉGÉ II where the central
point is the description of ontologies [5, 8]. Ontology sharing becomes a
central issue in many areas like semantic web or multi-agent technology
and UPML is a promising language for modeling shared reasoning
knowledge manipulated as tasks or PSMs [15].

- Bridge: is an adapter [7] allowing relating architectural parts like tasks
with the PSMs, tasks with the domain model or PSMs with the domain
model. The purpose of this component is to map terms from different
ontologies (the ones used to describe the related architectural parts).

- Refiner: is another kind of adapter allowing refining architectural
elements. It is thus possible to refine, for example, a general search
method into a Greedy method by replacing some sub-tasks called in the
original search method with adapted sub-tasks suited for the Greedy
method (e.g. choosing of the next state).

The association between tasks and PSMs is a one-to-many relation. There is a
natural issue to be solved when solving a task: how to choose the most appropriate
PSM from a list of candidates. UPML introduces the competence part in PSM’s
description comprising the input and output roles specification together with pre-
conditions and post-conditions restricting the valid input and output. Discussion
on task-PSM relation allowed us to propose two of the UPML extensions in this
paper.

2.2 NESS Description in UPML

This section is intended to shortly describe the NESS (Nonlinear Equations
Systems Solver) system [14] and to show how UPML could be used to model this
application.

In general, there is not a unique recipe in solving the non-linear equations systems
(non-linear simultaneous equations) [13]. To choose a particular method one
should take into account several external aspects: the form of the system,

knowledge about a "good" iteration, structural characteristics (the quality of the
Jacobian, condition number), etc.

Sample solving methods for non-linear equations systems (NES) considered in
NESS are the Classic Newton method, the Steffensen method, the Conjugated
Gradient method, or Broyden methods. Any of them has particular properties like
the convergence rate or precision.

The overall goal of NESS is to develop an intelligent system able to assist the user
in solving non-linear equations systems. Modeling the human expertise, the
system must be able to automatically choose the most adequate numerical methods
or to combine two or more numerical methods for solving non-linear equations
systems. The system assumes coupling the symbolic and numeric calculus.

NESS has the following more concrete goals:

- the acquisition and the formalization of the expert knowledge like solving
methods’ properties and their mapping on problem properties

- the identification of problem properties of interest in further reasoning

- the development of the solving methods base and of the corresponding
routines library

- the design of a task oriented formalism to model the problem solving
reasoning

 The figure above shows the hierarchy of tasks and PSMs modeling the NESS
application together with the ontologies defining the problem terminology.

From the figure it can be seen that several ontologies are used in order to define
the problem terms. The figure shows the import relations between these
ontologies. For example the ontology Equation Systems is imported in Nonlinear
Equation Systems which is further imported in a more specific ontology called
Numerical Solving of Nonlinear Equations. Another important ontology is one that
defines the terms for iteration: Solving by Iteration which inherits from
Approximation. The domain model is called Nonlinear System Solving and is
related by bridges with several tasks like Iteration or Approximately Solving NES.
Tasks are related by bridges with PSMs. For example, the Iteration task has two
PSMs possible to realize it: Classic Newtonor the Combined method. You may
also note that there are PSMs like NewtonIteration that can implement two tasks:
Iteration Generation Newton and Iteration Generation Combined.

One may also note that the IterativeSolving PSM is refined to PSMs like Classic
Newton or Combined Method.

There are two relations in the figure which do not pertain to the original UPML
description. They represent enhancements proposed in this paper and they will be
analyzed below.

NESS

- bridge TM

- bridge TD

Classic Newton

Stop

- task

Solving NES Nonlinear Equation Systems Equation Systems

Find System Properties

Nonlinear Systems
Solving

Numerical Solving of
Nonlinear Systems

IterationSolving by Iteration

NewtonIteration

Multiply

Invert

Jacobian Calculus

SteffensenIteration

It. Gen. Newton
GenerateNewIt.

IterativeSolving

Combined

It. Gen. Combined
Choose Iteration Method

-domain - ontology- PSM

- refining - choosing PSM task

- ontology import - precondition task

In
itia

l Ite
ra

tio
n

 G
e
n

e
ra

tio
n

C
h

o
o

sin
g

 Ite
ra

tiv
e
 S

o
lv

in
g

Approx. Solving NES

Approximation

1
2

1

2

Figure 1. The NESS hierarchy of tasks, methods and ontologies.

 2.2.1 Choosing the PSM to Fulfill a Task

The first new relation refers to the way the task Choosing Iterative Solving is
linked with the Iteration task by an element of the type choosing PSM (bold
arrow). As illustrated in the section 2.1, the UPML language includes the PSM
competence description that, together with the ontology bridges, facilitates the
choosing of the appropriate PSM to perform a task. An agent could choose the
right method to apply based, for example, on the checks it can perform on the
actual task input using the PSM precondition. It also may check the availability of
bridges between various ontologies used to describe the PSM’s actual input. It
results a choosing process based only on ontological knowledge. It means that a
PSM will not be considered as the method to fulfill a task if, for example, the class
in the ontology describing the method input in UPML description could not be
bridged with a class in the ontology describing the task input for the actual
problem domain. It also means that if the post-conditions of the method (described
in UPML) assume, after the method execution, the existence of some objects
described in the method ontology whose classes could not be matched with classes
in the ontology describing the problem domain, the PSM is not considered for this
task.

In the case of the NESS problem, one can see in the figure that there are the
Classic Newton method and the Combined method as candidates for the Iteration
task. There are some more solving methods since there are many mathematical
methods to iteratively solve a NES. Apart from the type of filtering described
above, NESS is willing to make a complex choice based on methods properties
available as domain knowledge (not as PSMs preconditions). NESS is planning to
use an expert system for making this decision since this is a complex task and
deserves a special treatment. It is exactly the purpose of the method-chooser-
task specification item in PSM’s description to assign a task for choosing the
PSM to solve the Iteration task. Part of the UPML definition for the Iteration task
is presented below:

task Iteration
 pragmatics
 General iteration task
 ontology
 Solving by Iteration
 specification
 roles
 input function; input initialIteration; input
error; input steps;
 output iterations;
 method-chooser-task
 ChoosingIterativeSolving(function,
initialIterations)
 goal
 task(input function; input initialIterations;

input error; input steps;

 output iterations) →
 newIterations(iterations,

function, initialIterations, error, steps)
⊂

∧
 (initialIterations iterations);

 preconditions
 steps > 0;
The ChoosingIterativeSolving task must reason about PSMs based on the domain
knowledge. As a consequence, it must import the UPML ontology and the
developer of the system must create bridges between the domain model and the
UPML ontology. The input of this task is intended to be the actual input of the
task it is linked with. The output of the task is an object of class PSM according to
the UPML ontology.

2.2.2 PSM’s Precondition Satisfaction

The second relation introduced in this paper is reflected in the link between the
task Initial Iteration Generation and the PSM NewtonIteration (arrow with bullet).
The task in the relation is called precondition task because its role is to satisfy a
PSM’s precondition if that precondition is false. The reason to add this new
construct for our problem is based on the necessity to provide initial iteration(s)
for a NES PSM. A second factor affecting this decision is related to the fact that
the NewtonIteration PSM may be or may be not called with the initial iterations
already specified. For example, the task Iteration Generation Combined may be
satisfied using the NewtonIteration PSM, but since it is called in a while loop in
the CombinedMethod the initial iteration already exists for iterations after the first
call of Iteration Generation Combined. The code extract showing the new notation
is presented below in the preconditions section:

problem solving method NewtonIteration
 pragmatics
 Iteration generation based on a Newton process
 ontology
 Iterative Solving
 competence
 roles
 input fct; input iterations; output newIteration;
 preconditions
 iterations <> Ø |
 iterations := InitialIterationGeneration(fct,
‘ClassicNewton’);
 subtasks
 Multiply, Invert, JacobianCalculus;
 postconditions
 …

2.2.3 Tasks with Pre/Post-tasks

There is a third enhancement proposed in this paper, whose purpose from NESS is
not reflected in the figure. However, there is a case where it may be used as
illustrated below.

In some situations, an alternative approach to the adding of the precondition
satisfaction task (see above) is to assure that the Initial Iteration Generation task is
executed before the task intended to be realized by the NewtonIteration PSM. In
the NESS application, an appropriate choice would be to mark this task as a pre-
task of the Iteration task. Symmetric considerations allow for introducing post-
tasks for a specified task. Thus, this paper proposes explicitly adding the notions
of post/pre tasks in UPML task structure as a new UPML relation, like
exemplified below:

task Iteration
 pragmatics
 General iteration task
 ontology
 Solving by Iteration
 specification
 roles
 input function; input initialIteration; input
error; input steps;
 output iterations;
 method-chooser-task
 ChoosingIterativeSolving(function,
initialIterations)
 pre-tasks
 InitialIterationGeneration
 post-tasks
 PostIterationTask1;PostIterationTask2
 goal
 …
 preconditions
 …

The usefulness of the notions of pre/post tasks is also proved by some other task
based environments like SCARP [20]. The paper [18] uses this relationship in a
context where several agents perform tasks and there were restrictions on the task
ordering.

Conclusions

As presented in the previous section, three new elements were proved to be useful
to be included in UPML for the benefits of the NESS application: a task for
choosing PSMs for another task, precondition satisfying task and the pre/post
tasks. The first allows for enhancing the process of choosing a PSM to satisfy a
task by using domain expertise. It is very valuable in this mathematical context

since there is complex domain knowledge to be used in the choosing process apart
from the ontological matching. The second allows postponing the elimination of a
PSM in the process of selection of the method to fulfill a task by specifying an
alternative way to fulfill a PSM’s precondition and the third new proposed
element represents a way to make explicit an order relation between tasks.

The present work was prepared in order to model the task reasoning in multi-agent
systems. Of interest in such contexts would be to model the execution of a task in
agents’ local data environment described using some appropriate domain model.
This remains as a future work for us to propose UPML extension with appropriate
constructs.

References

[1] D.C. Brown, B. Chandrasekaran. Expert Systems for a Class of
Mechanical Design Activity. Knowledge Engineering in Computer-Aided Design,
(ed. J.S. Gero), pp. 259-282, North-Holland, New York, 1985.

[2] T. Bylander and S. Mittal. A language for classificatory problem solving.
AI Magazine, 7(3):66-77, 1986.

[3] B. Chandrasekaran. Generic Tasks in Knowlwdge-Based Reasoning:
High-Level Building Blocks for Expert System Design. IEEE Expert, pp. 23-30,
Fall 1986.

[4] B. Chandrasekaran. Design Problem Solving: A Task Analysis. AI
Magazine, 11(4):59-71,Winter 1990.

[5] M. Crubezy, Z. S. Pincus, M. A. Musen. Mediating Knowledge between
Application Components. Semantic Integration Workshop of the Second
International Semantic Web Conference (ISWC-03), Sanibel Island, Florida,
CEUR, 82. 2003.

[6] D.Fensel, E. Motta, V.R. Benjamins, M. Crubezy, S. Decker, M. Gaspari,
R. Groenboom, W. Grosso, F. van Harmelen, M. Musen, E. Plaza, G. Schreiber,
R. Studer and B. Wielinga. The Unified Problem-solving Method Development
Language UPML. Knowledge and Information Systems, 5(1), 2003.

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[8] J. H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubézy,
H. Eriksson, N.F. Noy, S.W. Tu: The evolution of Protégé: an environment for
knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1): 89-
123, 2003.

[9] F. van Harmelen and J. R. Balder. (ML)2: a formal language for KADS
models of expertise. Knowledge Acquisition Journal. 4(1):127-161, 1992.

[10] T.R. Johnson, J.W. Smith and T. Baylander. HYPER - Hypothesis
matching using compiled knowledge. Proceedings of the AAMSI Congress 1989

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Musen:Mark_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Fergerson:Ray_W=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Grosso:William_E=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Crub=eacute=zy:Monica.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/e/Eriksson:Henrik.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/n/Noy:Natalya_Fridman.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/t/Tu:Samson_W=.html
http://www.informatik.uni-trier.de/~ley/db/journals/ijmms/ijmms58.html#GennariMFGCENT03

American Association for medical Systems and Informatics, San Francisco,
California, pp. 126-130, 1989.

[11] K.A. Johnson, T.R. Johnson, J.W. Smith, M. DeJongh, O. Fisher, N.K.
Amra and A. Bayazitoglu. RedSoar: A System for Red Blood Cell Antibody
Identification. Proceedings of the Fifteenth Annual Symposium on Computer
Applications in Medical Care, pp. 664-668, McGraw Hill, Washington D.C.,
1991.

[12] D. Landes. DesignKARL - a Language for the Design of Knowledge-
Based Systems. 8th Knowledge Aquisition for Knowledge-Based Systems
Workshop KAW94, Banff, Canada, 1994.

[13] S. Maruster. Numerical methods in nonlinear equations solving. Editura
Tehnica, Bucuresti, 1981.

[14] V. Negru, St. Maruster, C. Sandru: Intelligent system for non-linear
simultaneous equation solving, Tehnical report, RISC-Linz Report Series, No. 98-
19, December, 1998.

[15] B.Omelayenko, M.Crubézy, D. Fensel, V.R. Benjamins, B.J. Wielinga,
E. Motta, M.A. Musen andY. Ding: UPML: The Language and Tool Support for
Making the Semantic Web Alive. Spinning the Semantic Web 2003: pp. 141-170,
2003.

[16] W.F. Punch. A Diagnosis System Using a Task Integrated Problem
Solving Architecture(TIPS), Including Causal Reasoning. PhD. Thesis, Dept. of
Computer and Information Science, The Ohio State University, 1989.

[17] W.F. Punch, M.C. Tanner, J.R. Josephson and J.W. Smith. PEIRCE:
Atool for experimenting with abduction. IEEE Expert, 5(5):34-44,1990.

[18] C. Sandru, V. Negru and D. Pop - A Multi-Agent Approach to a Sales
Optimization Application, The 14th International Conference on Control Systems
and Computer Science July 2 - July 5, 2003, Bucharest, Romania.

[19] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt,
W. Van de Velde and B. Wielinga. Knowledge Engineering and Management. The
CommonKADS Methodology. The MIT Press, 1999.

[20] J. Willamowski. Modélisation de tâches pour la résolution de problèmes
en coopération système-utilisateur. Actes 9ième RFIA, Paris (FR), pp305-316,
(11-14 janvier) 1994.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/o/Omelayenko:Borys.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Crub=eacute=zy:Monica.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/f/Fensel:Dieter.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Benjamins:V=_Richard.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/w/Wielinga:Bob_J=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Motta:Enrico.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Ding:Ying.html

