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Abstract: The aim of this work is to analyze the influence of the representation’s 
modification on the behaviour of an adaptive representation evolutionary algorithm based 
only on a mutation operator. A statistical analysis of the mutation properties suggests some 
strategies for the modification of the representation’s base. The influence of these 
strategies is numerically analyzed on some classical test problems of single and multi-
objective optimization. 
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1 Introduction 

The design of an evolutionary algorithm (EA) for a given problem involves many 
choices concerning: representation, fitness function, evolutionary operators (e.g. 
selection, mutation, recombination), control parameters etc.  In the absence of 
some well-established design rules, the adaptation of the characteristics of an EA 
during the evolution becomes an important issue. Different adaptation approaches 
concerning parameters or representation have been proposed [3].   

The basic idea of adaptive representation is that by changing the representation 
one obtains a reshaping of the search space ensuring in this way the use of 
multiple search heuristics [6], [7] .  Such an approach has been applied for genetic 
algorithms in order to overcome the disadvantages of the binary encoding, either 
by using a Gray code [1] or by changing the base of the representation from 2 two 
other values [6]. The idea of changing the base of representation during the 
evolution has been introduced in [6] where some adaptive representation 
algorithms have been proposed. The main idea is to randomly change the 
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representation base after a given number of generations or when a random event 
occurs. 

Starting from this idea, in [4] is introduced a new technique, called Adaptive 
Representation Evolutionary Algorithm (AREA) which can be applied for solving 
single and multiobjective optimization problems.  The main particularity of AREA 
is that it relies only on mutation and after a number of generations in which no 
improvement occurs, the representation alphabet (i.e. the base) is changed by 
randomly modifying the representation base. 

 In this paper we analyze the influence of the representation on the mutation 
properties and try to find efficient strategies for changing the alphabet, starting 
from some theoretical insights. The next section presents the AREA technique. 
Section three contains a statistical analysis of the influence of the representation 
base on the mutation properties while section four presents results of numerical 
experiments on some classical single and multiobjective optimization problems.  
The ability of the AREA to solve a real-world problem of parameter estimation is 
compared with that of the differential evolution algorithm [8]. 

2 The AREA technique 
In the AREA technique an individual consists of a pair (x, B) where x is a string 
encoding object variables and B specifies the base used for encoding x. B is an 
integer number, B ≥ 2, and x is a string of symbols from the alphabet {0, 1,..., 
B-1}. If B = 2, the standard binary encoding is obtained. A chromosome encoded 
over a higher alphabet has a shorter length than a chromosome encoding the same 
value (point in the search space) at the same precision but over a lower alphabet. 

The only transformation operator in AREA is mutation, thus AREA can be 
applied also for populations of a single individual. Mutation can modify the object 
variables as well as the last position (specifying the representation base).  Thus the 
encoding is adaptive, i.e. may be changed during the search process as an effect of 
the mutation operator. When it is applied to a gene belonging to the object 
variable substring (x - part of the chromosome) the mutation consists in replacing 
the current value of the gene with a randomly one from the current alphabet. For 
each gene the mutation is applied with a given mutation probability, pm. The 
offspring obtained by mutation will replace its parent only if it is better. A 
mutation generating an offspring worse than its parent is called a harmful 
mutation.  Unlike the algorithms proposed in [6], in AREA the base is changed 
only when a predefined (consecutive) number of mutations applied to an 
individual do not improve its quality.  Thus the representation changes in an 
adaptive manner being determined by the behaviour of the algorithm. 

The structure of AREA follows the general structure of an evolutionary algorithm: 
(i) initialisation (during the initialisation, each AREA individual is encoded over a 
randomly chosen alphabet); (ii) iterative application of mutation (it is applied with 
probability pm to each individual) and selection (if the offspring obtained by 



mutation is better than its parent, then the offspring enters in the new population). 
If the number of successive harmful mutations for an individual exceeds a 
prescribed threshold (denoted by MAX_HARMFUL_MUTATIONS), then the 
individual representation is changed and it enters in the new population with this 
new representation. Otherwise, the individual (the parent) enters unchanged in the 
next generation. The reason behind this mechanism is to dynamically change the 
individual representation whenever it is necessary. If a particular representation 
has no potential for further exploring the search space, then the representation is 
changed. It is hoped that in this way the search space will be explored more 
efficiently.  

This simple algorithm can be applied both for single objective and for 
multiobjective optimization (by considering in the selection step that the offspring 
is better if it dominates its parent). In implementing an adaptive representation 
algorithm at least two questions arise:  (i) When the base should be changed? (ii) 
How should be chosen the new representation? While the first question has been 
answered in [4] the second is still an open one. Up to now mainly random base 
changes have been implemented. In the rest of this paper we will analyze different 
base changes strategies. 

3 Influence of the representation on the mutation 
properties 

In this section we present a statistical analysis of the influence of the 
representation on the exploration ability of the mutation operator.  Such an 
analysis could be useful to find strategies for changing the representation. 

Let us consider that each real value xŒ[a,b] is transformed into an integer  value, 
vŒ {0, 1, …, Vmax} by the transformation v=[(x-a)/(b-a)Vmax] 1. This integer value 
can be represented in a base BŒ{2,…,Bmax} by a string of q(B)=[logB Vmax] 
symbols from {0, 1, …, B-1}.  Thus each real component of a vectorial individual 
is represented by a string, S(v), of q(B) integer values from  {0, 1, …, B-1}.  When 
the base B is changed, the length of S(v), q(B), is also changed. Since mutation 
consists in modifying elements in the string S(v), by changing  the base the effect 
of the mutation can be altered. We analyze the influence of such a change on some 
statistical characteristics: the expected number of mutated genes, the expected 
value obtained after mutation and the transition probability between two values.  
If the probability of mutating a gene is pm , then the expected number of mutated 
genes, m(B), satisfies: 
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1  [.] denotes the upper integer part of a real number. 



If  pm does not depend on  q(B) then by increasing B,  q(B) decreases, thus m(B) 
also decreases. On the other hand, if pm=c/q(B), then m(B)=c, thus the expected 
number of mutated genes is constant. In the following we will consider that 
pm=c/q(B). 

To compute the expected value after mutation, let us consider a given integer 
value   vŒ {0, 1, …, Vmax} encoded in the base B by a string S(v)=(v0, v1, …, vq(B)-1). 

By mutation, each element of S(v) can be replaced with a randomly selected value 
from {0,1,…,B-1}. Denoting with Wi the random variable corresponding to the 
mutated ith component of S(v), its probability distribution satisfies: 
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The random variable, W, associated with the string S(W)=(W0,W1, …, Wq(B)-1), 
verifies W=Wq(B)-1Bq(B)-1+…+W1B+W0, thus its expected value can be computed as 
follows: 
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Thus if pm does not depend on q(B), then E(W) is not significantly  influenced by 
the value of  B because Bq(B)ªVmax. On the other hand, if pm depends on q(B) (for 
instance pm=1/q(B)) then  E(W) varies when B varies. As B is greater the expected 
modification on v is greater.  

The influence of the base value on the mutation properties can be also analyzed by 
the associated probability distribution function (pdf). To obtain information on the 
pdf we computed the transition probabilities between two values v and w.  Let us 
consider that these values are represented in base B by q(B) symbols:  S(v)=(v0, v1, 
…, vq(B)-1) and S(w)=(w0, w1, …, wq(B)-1), respectively. The probability of transition 
of gene vi into  gene wi   is:  
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Since the mutation is independently applied (with probability pm) on each gene it 
follows that the transition probability between v and w is: 
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where q denotes the number of identical genes in the encoding of v and w while qπ 
denotes the number of different genes.  As is illustrated in Fig. 1 and 2, the base 
value highly influences the transition probabilities, i.e. the probability distribution 
corresponding to mutation.  This remark agrees with a largely accepted opinion 
that by changing the base one can change the search abilities of the algorithm. 
However there exist bases for which the corresponding transition probabilities are 
similar (e.g. bases 2, 4 and 8 in Fig. 1). Changing between such bases may not 
assure an increase of the search ability because some regions have low transition 
probability in all cases.  On the other hand choosing successive values of the bases 
ensures a better cover of the search space through mutation (see Fig. 2). These 
remarks suggest that analysing the base changing strategy could be useful in 
practice. The current implementations of the adaptive representation algorithms 
[4], [6] are based on a random selection of the new representation base.   Other 
strategies can be taken into consideration. Some examples are: restricted random 
selection (e.g. random powers of 2) or deterministic selection (e.g. successive 
values taken in circular manner).  Unfortunately choosing the adequate strategy is 
a difficult problem, mainly due to the fact that the same strategy can be good for a 
given problem and bad for another one. Thus to find out some information on the 
influence of base changes strategies we have to perform some numerical 
experiments. 

 

 
Fig. 1. Transition probabilities for bases that are powers of 2 



 

 
Fig.2. Transition probabilities for some consecutive values of the base (7, 8, 9, 10) 

4 Experimental analysis 
The first aim of this experimental analysis is to compare some base changing   
strategies.  We started with the AREA technique proposed in [4] and we replaced 
the purely random strategy with some controlled ones. The goal is to get some 
insights on the influence of the base changing strategy starting from the results 
obtained for some classical optimization problems with single or multiple 
objectives. In all tests AREA used a single individual and the mutation probability 
was pm=c/(nq(B)).  All the results are averages obtained for 30 independent runs. 
The following base change strategies have been tested: (i) Purely random: the new 
base is randomly selected;  (ii) Random powers of 2: the new base is a random 
power of 2; (iii) Restricted random: the new base is randomly selected such that 
the difference between the old and  the new base is less than 5; (iv) Deterministic: 
the new base is obtained by incrementing the current one in a cyclic manner  (e.g. 
B is replaced with B+1 and Bmax is replaced with 2). 

4.1. Single objective test problems 

The parameters used in this case were:  pm=1/(nq(B)), Bmax=32, Vmax=230-1,  
MAX_HARMFUL_MUTATIONS=5.  The single objective test functions are 
presented in Table 1. Test function f1, also known as Griewangk's function has 
many widespread local minima. The locations of the local minima are regularly 
distributed. Test function f2, also known as Rosenbrock's valley is a classic 
optimization problem, also known as Banana function. The global optimum is 



inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial, 
however convergence to the global optimum is difficult. 

Test functions Domain  Global minimum 
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Table 1. Single objective test functions used in experiments. 

Test function f3, also known as Rastrigin's function is based on unimodal function 
proposed by DeJong with the addition of a cosine modulation to produce many 
local minima. Thus, the test function is highly multimodal. However, the locations 
of the minima are regularly distributed.   The results in Table 2 contain the value 
of the objective function obtained after the given number of function evaluations. 

 

Base changing strategy Test 
functions 

Function 
evaluations 

Purely 
random 

Random 
powers of 2 

Deterministic 

f1 100000 0.06535 0.10452 0.05118 

f2 500000 5.62107 47.8586 8.09402 

f3 100000 0.01127 0.08238 0.00000053 

Table 2.  Results for the single objective problems 

These results suggest that the base changing strategy influences the AREA 
behavior for some test functions. As the theoretical analysis implies using random 
powers of 2 one obtains worse results than for the other strategies. 

4.2. Multi-objective test problems 

Multiobjective test functions used in these experiments have been introduced in 
[2].  These functions are built by using three functions f1, g, h. The bi-objective 
function T considered here is:  T(x) = (f1(x), f2(x)). The optimization problem is: 
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The first problem is the test function ZDT4. This function contains 219 local 
Pareto optimal fronts and, therefore, it tests the EA ability to deal with 
multimodality. The involved functions are defined by: 
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where m = 10, x1 ∈ [0,1] and x2,…,xm ∈ [-5,5].  Global Pareto optimal front is 
characterized by the equation g(x) = 1. The best local Pareto optimal front is 
described by the equation g(x) = 1.25. Note that not all local Pareto optimal sets 
are distinguishable in the objective space.  The second problem is test function 
ZDT6. This function includes two difficulties caused by the nonuniformity of the 
search space. First, the Pareto optimal solutions are nonuniformly distributed 
along the global Pareto optimal front (the front is biased for solutions for which 
f1(x) is near one). Second, the density of the solutions is lowest near the Pareto 
optimal front and highest away from the front.  This test function is defined by:  
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where m = 10, xi ∈ [0,1], i = 1,2,…m.  The Pareto optimal front is characterized by 
the equation g(x) = 1, and is nonconvex. 

In order to analyze the results obtained for multiobjective test functions a distance 
metric proposed in [5] is used.  Assume that the Pareto front is known. Let us 
denote by P a set of Pareto optimal solutions. For each individual i from the final 
population, the FP distance (Euclidean distance or another suitable distance) dij to  
all points j of P is computed. The minimum distance:  mindisti = min  is kept 

for each individual.  The average of these distances:  
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represents a measure of convergence to the Pareto front. Lower values for DM 
indicate a better convergence. The values of the distance metric for the test 
functions ZDT4 and ZDT6 are presented in Table 3. These values have been 
obtained for: pm=1/(nq(B)), Bmax=15,  MAX_HARMFUL_MUTATIONS=50, 
number of function evaluations: 20000. From Table 3 we can see that for the test 
function ZDT4 the result obtained by using only powers of two is almost similar to 
the result obtained by standard AREA (purely random).   On the other hand in the 
case of ZDT6 this strategy seems to be not appropriate. Using  the restricted 
random strategy better results are obtained for ZDT4.  Increasing the maximal 
value of harmful mutations  the results obtained by AREA is very good for both 
considered test functions. 



Base changing strategy 
Test 

function Purely 

random 
Random 

powers of 2 
Restricted 
random 

AREA with 
MAX_HARM_MUT= 5000 

ZDT4 0.97518 0.97229 0.43411 0.5556 

ZDT6 0.1042 0.69992 0.10491 0.0024 

Table 3. Results obtained for test functions ZDT4 and ZDT6. 

4.3. A parameter estimation application 

The second aim of the experimental analysis was to compare AREA and  an 
evolutionary algorithm based on a real valued representation. We considered the 
problem of fitting some experimental data  with a model based on six kernel 
functions of bigaussian type.  Each bigaussian has three parameters and the  goal 
was to find the parameters of the involved bigaussians and also the coefficients of 
the linear combinations of the bigaussians (thus 24 parameters have to be 
determined). We tried to solve this problem by using both a “differential 
evolution” (DE)  algorithm [8] and the AREA technique.  The differential 
evolution algorithm proved to be efficient in parameter estimation problems but its 
behaviour is highly dependent on its control parameter values. To compare the 
behavior  of the two algorithms we computed the mean squared error (MSE) 
obtained by using the same number of function evaluations. The main remark is 
that when its parameters are carefully chosen, DE performs better than AREA, but 
AREA depends on fewer parameters and the differences between results obtained 
using different base changing strategies are not as large as in the case of   DE, 
when a control parameter value (e.g. CR) is changed. 

 

DE (gen.: 500, population size: 100) AREA (function evaluations: 50000) 

Control parameters  MSE Base changing strategy  MSE 

CR=0.9,  F=0.5 0.00086 Purely random 0.00559 

CR=0.2,  F=0.5 0.13370 Random powers of 2 0.01895 

Adaptive  DE [9] 0.02084 Deterministic 0.00441 

Table 4.  Results for the parameters estimation problem 

Conclusions  

The strategy of changing the base in AREA technique may influence the search 
ability of the algorithm but this influence depends on the problem. For a parameter 
estimation problem, AREA proved to be competitive with respect to the DE 
algorithm.  



Taking into account the No Free Lunch Theorems (NFL) [10], we cannot say that 
one of the strategies used for changing the representation is better than the others 
for all optimisation test problems. One can suggest the adequate strategy only for 
particular problems. 
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