
A computational methodology for linguistic
rules

Konstantinos Fouskakis
Department of Computer Science, “Politehnica” University of Timisoara, Faculty
of Automation and Computers, Bd. V. Parvan, No. 2, 1900 Timisoara, Romania,
E-Mail: costasfous@yahoo.com

Abstract: The purpose of this work is to describe the format and functionality of the
principles and the transformations of a computational methodology for expressing general
linguistic rules on the X-bar trees.

Keywords: methodology, linguistics, system, grammars.

1. Introduction
The methodology that I have developed allows:

• the declaration of a set of principles and transformations

• the declaration of a set of theories in terms of principles and
transformations

• the selective application of the above on the X-bar structures and
obtaining the desirable results

The linguistic knowledge of this methodology has the following structure.

Input X-bar
X-bar

processor Output X-bar

Principles Theories Transformations

Program

Fig.1 Linguistic universe

It represents the linguistic knowledge universe that is analyzed as follows:

• Input X-bar structures

It contains the X-bar tree structures of the phrases. Their format is given below
and is according to the X-bar theory[1][2][3].

• Principles and transformations

It contains all principles and transformations that have been defined so far. The
principles check an X-bar structure if it accomplishes certain structural
requirements as a whole or in its parts. Also, they can check even if nodes,
features of nodes, anaphors, terminals or even subtrees are according to certain
linguistic requirements. On the other hand the transformations additionally
transform the X-bar trees and produce one or more new with different structure,
nodes, features of nodes, anaphors or terminals. Their format is given below.

• Linguistic theories

It is actually the various theory versions as expressed in the presented
methodology. Each version of the theory is defined in terms of principles and/or
transformations which may be conditionally applied via if-then-else expressions.
The X-bar trees that the next rule is going to be applied on can be changed
according to the produced x-bar structures by the rules.

• Linguistic program

It is the actual part of the linguistic universe which declares the rules of the
universe (theories, principles, transformations) that are applied on the X-bar trees
and in what order.

• Output X-bar structures

This is the output with the generated X-bar trees and the corresponding
information of the application of the linguistic program.

The general form of the X-bar trees that are manipulated by the principles and
transformations is the following:

Χ2 Spec Χ2 Χ2 Spec Χ1
Χ1 Χ1 Υ2 Χ1 Χ0 Υ2
Spec X0 Spec X2 X0 terminal

Spec X1

X0 Y2

X2

The Y2 is a structure of the form X2. The X represents linguistic categories (verb,
noun, etc). In the following, the words that are in bold are operators.

2. The principles and transformations

They are described according to the methodology by using the following format:

• principle / transformation the name of the rule.

• variables (we declare the variables which correspond to parts of an X-bar
structure)

• structuredescription (we describe a subtree structure of an x-bar tree on
which we want to apply the principle rule)

• structurecommands (we describe the checks, the variables values changes,
the new declarations of variables and the transformations if the rule is of
transformation type)

The structuredescription is used for the designation of the subtree on which the
specific rule will be applied either this rule belongs to the principles category or to
the transformations category. In order to apply the principle or the transformation
on an X-bar tree, the subtree that we describe in the structuredescription field
must be part of the tree or even the whole of this X-bar tree.

An example of the subtree that we can enter in the structuredescription field:

(node noun bari, (node noun bar, terminal car), empty)

The subtree’s scheme is the following:

 NOUN’

NOUN

EMPTY CAR

The above subtree, apart from the specific structure, has also specific names for
the nodes and the terminal elements. This subtree is of the X1 category. The
variable X has the value NOUN and the terminal element is the word “car”. The
specific structure and elements of the above tree limit the application of the
specific rule in only one subtree. Therefore in order to apply the rule, it is
necessary to find an X-bar tree with exactly the same subtree. However, this
constraint does not enable us to define principles and transformations that will
cover general cases for a set of trees that will have a certain common structure and
characteristics on which the specific principle or transformation can be applied.

The linguistic theory [1][2][3][4][5] regarding the form and the characteristics of
the trees demands general rules that should cover a lot of cases. The use of
presented methodology at a corresponding software system in order to define
linguistic rules requires flexibility in the way that these rules are stated. Due to the
above, it was found necessary to develop a group of appropriate operators, as well

as the use of different types of variables in the variables, structuredescription
and structurecommands fields of principles and transformations. The next
sections describe the variables in these fields. Except the local variables that are
valid inside a principle or transformation, also there are the grammar variables that
can be used by more than one rule (principle or transformation) and are defined in
the theory input. This ability facilitates the manipulation and the exchange of
information between more than one X-bar trees that are used by the principles and
transformations.

3. The variables type of the field “variables”

In the field variables of principles and transformations we can define variables of
the type: node of tree, terminal element, anaphor, features of node or subtree and
(see below in the examples the variables node1 and n in the first example and
noun and v in the second one) in the values of every new variable we can use
variables that we have already declared. They can be used in the fields
structuredescription and structurecommands of the principles and the
transformations.

The general format for variables declaration is:

type operator variable name set variable value or variable value ….

The values of the node variables have the format:

name of node type of node : features features of node

the type of the node can be barii, bari, bar corresponding to X2, X1, X0 of the X-
bar scheme. The features of a node is a list of : + Name of the feature, - Name of
the feature or Name of the feature.

The anaphors connect terminals and/or subtrees.

4. The “structuredescription” field

4.1 The two different kinds of variables

These are the variables of the kind of variables field and the variables that can be
defined only in the structuredescription field and are used for the description of
the transformations in the structurecommands field.

The variables of the first kind can be either variables that have already been
defined in the field variables or new variables. If a variable has already been
defined then it must be of the same type with the corresponding element of the
structuredescription structure that it substitutes. This variable constraints the
corresponding element of an X-bar tree that the rule is applied on, in a specific set
of values (see below in the example “rule of dominance” the variables node1 and
n). Also, we can use new variables of the variables type. They are defined
automatically the first time they appear in the structuredescription structure by
taking their values from the corresponding element of the X-bar structure where
this rule is applied on (see below the example “rule of dominance” the variables
node2, t1 and t2). The main importance of these variables is that they provide an
easy way to check if two or more elements of the structuredescription structure
are of the same type and have the same values.

The second kind of variables can be of type node of tree, terminal element or
subtree. They can be used in combination with the other kind of variables and they
belong to the transformationvariable kind. The result of this definition is the
declaration of a new variable. The name of this variable is the name that follows
the transformationvariable operator. The type of this variable is the type of the
corresponding element of the structuredescription structure. The initial value of
this variable is the value that has the corresponding element of the X-bar structure
on which we apply the rule (see below the example “rule of dominance” and the
variables sd1 and sd2).

4.2 The tree operators

a) There are operators that declare constraints between two trees:

1) a subtree1 must be or not (left or right) subtree of the subtree2

2) a subtree1 must be or not subtree of a tree with a specific head node

b) Also, there are two operators that are applied to only one subtree of the
structuredescription structure. The first one (not) declares that a subtree must
not be subtree of an x-bar tree at a specific position and the second (atree)
declares that the subtree must be subtree of another subtree of an x-bar tree at this
position (see the example “rule of dominance” below)

c) Finally there are the operators and, or and anytree that determine:

1) subtree1 and subtree2 and … (all the subtrees are subtrees at this position
of an x-bar tree)

2) subtree1 or subtree2 or ….. (at least one of the subtrees is a subtree at this
position of an x-bar tree)

3) anytree (any tree could be at this position of an x-bar tree)

5. The field “structurecommands” of principles and
transformations

In the structurecommands field of the rules we can make checks, declare
variables, change values of variables and determine the transformations of an x-
bar tree.

5.1 The variables and their use

In the structurecommands field we can define new variables :

1) in the same way as the variables field

2) of features type that take values from tree nodes

3) of anaphor type that take values from terminals subtrees

4) of subtree type that take values an input x-bar structure

Additionally, we can change the values of variables by:

1) adding or removing their values

2) setting new values at terminals variables

3) calculating all the values of a variable according to the current values of
the possible variables that are used in its values

4) seting new values at tree nodes, their features, their name or their type

5) seting new values at subtree variables

6) adding or removing a specific anaphor at tree, terminal or anaphor
variables

7) adding or removing a specific feature at tree node variables

Finally, it is possible to check the existence of a variable or if it has been declared
as grammar variable.

5.2 The Transformations in the “structurecommands” field

We can also transform an x-bar tree with a transformation rule.

transformations transformation1 also transformation2 also ….

We can perform more than one transformation in a transformation rule by using
more than one such command and every transforamtion can change more than one
parts of a tree. Every transformation in the above form is defined as following:

&name of variable of type transformationvariable transform new value

The new value can be a variable or a tree, a node or a terminal that may contain
variables. The &name of variable of type transformationvariable must be of
transformationvariable type and has the same the type with the new value (see
below the example “attachment of noun phrase” and the transformation of the
transformation variable sd2).

5.3 The Grammar variables in the “structurecommands” field

All types of variables can be declared as grammar variables. These variables can
be used by more than one principle or transformation. This means that a variable
that has been declared in a rule can be used and manipulated by the next rule or
rules in every field of the three fields of a principle or transformation (see below
the first example and the variable sd1 in its structurecommands field). There is a
operator that defines a variable as grammar variable and a second one that deletes
a grammar variable. They can be used in the structurecommands field. Their
main usage is in the theory input (see introduction).

5.4 Checks in the “structurecommands” field

In the structurecommands field we can also use structures of if - then - else type.
In the if - condition part it is possible to apply checks at every type of elements
(anaphors, terminals, features of nodes, nodes of trees, subtrees).

The operators about anaphors check if the anaphors of their right and left
arguments are or not the same or if a specific anaphor exists. Their left and right
arguments can be a sequence of anaphors, a terminal or a subtree.

The operators about terminals check if the terminals are equal or not, with or
without checking their anaphors.

The operators about the features of the nodes check if their operands have or not
the same features, if a specific feature exists, if a list of features is subset or have
at least one common with another list of features. The left and the right arguments
can be either nodes or features of node.

The operators about the nodes of the trees it is possible to check if two nodes are
equal or not. Additionally, it is possible to check if they have or not the same
name or type.

The operators about the trees check if are equal or not.

The above operators take arguments that can be variables or they can contain
variables.

6. Examples

The following are examples of linguistics rules that have been expressed
according to the presented methodology. Also, a grammar variable is declared in
the field structure commands of the principle ‘The rule of c-command’.

The rule of c-command [6]

An X element commands structurally (c-commands) an Y element, if and only if
the first bifurcated node that dominates X, dominates also Y and neither X
dominates Y nor Y dominates X.

principle ‘The rule of c-command’.

variables node node1 set ‘Verb’ bar or ‘Preposition’ bar

also node n set ‘N’ bar or ‘Noun’ bar.

structuredescription

(node &node2, (node &node1, terminal &t1): transformationvariable sd1,

 atree (node &n,terminal &t2):transformationvariable sd2)

structurecommands

comment &sd1:’ c-commands ‘:&sd2, addGrammarVariable sd1.

The above principle acts upon an X-bar structure that has a sub tree of the
following structure: node2

Verb or Preposition

any terminal

N or Noun

any terminal

The discontinuous line means that the right sub tree can be at any depth as the
operator atree describes.

The rule of noun phrase attachment [6]

This transformation describes the movement of a noun phrase.

transformation ‘Attachment of noun phrase’.

variables node ‘Noun’ set ‘N’ barii or ‘Noun’ barii

also node ‘V’ set ‘V’ bari or ‘Verb’ bari.

structuredescription

(node &’V’: transformationvariable sd3,

subtree &sb1, (node &’Noun’,anytree,anytree):transformationvariable sd1

): transformationvariable sd2.

structurecommands

(&sd1 addanaphor i1, % addition of anaphor reference

 transformations &sd2 transform % declaration of transformations

(node &sd3, (node &sd3, subtree &sb1, t:anaphor i1), subtree &sd1)).

The above transformation acts upon an X-bar structure that has a sub tree of the
following structure and produces a new X-bar structure:

V

V ’

N ’’

Spec
N ’

N Υ ’’

The produced X-bar structure is the following:
V ’

V ’

V t

N ’’

Spec N ’

Υ ’’N

Since, the sd1 variable of the first rule was declared as a grammar variable, if we
execute these two rules we have two variables with the same name in the
transformation rule. We must always use a different notation for the names of the
variables that we intend to use as grammar variables.

Conclusions
A computational system that implements the presented methodology is possible to
be used as a tool by researchers. They can define rules and they can apply them
on a set of x-bar structures. Additionally, it is possible to combine this with
another system that produces these x-bar structures. That system can use a set of
very simple rewriting rules for the production of the x-bar structures. These rules
can be based only on general phrase structure information and they are the rules
that are described in the first section for the x-bar scheme.

The main characteristics of the presented methodology:

• It examines x-bar structures and their elements and rejects invalid
structures.

• It transforms x-bar structures and their elements and produces new ones.

• It manipulates the semantic and syntactic information of the x-bar
structures.

• It is necessary for the lexicon to have the syntactic and semantic
information as a list of features:

+ Name of the feature, - Name of the feature, Name of the feature

• The features of the nodes of x-bar structures can be changed dynamically
by using transformations. The syntactic and semantic information has
simple structure, simpler than the HPSG[7]. The relation between the
elements is determined and by the structure of the x-bar scheme.

• It is possible to define general rules that are applicable in many different
x-bar structures since they are produced from the same general scheme
and it is possible for them to adapt in different cases with the variables
and the if-then-else checks.

• The simplicity and generality facilitates the implementation, the
maintenance and extension of the corresponding applications.

• It is better for complicated embedded applications since the defined and
produced structures are simpler and smaller and it is not necessary to
have large memory size and strong processor.

References

[1] N. Chomsky: ‘Remarks on nominalization’. In Jacobs & Rosenbaum
(eds) Readings in English Transformational Grammar. Massachusetts:
Xerox College, 184-221, 1970.

[2] N. Chomsky: Lectures in government and binding. Dordrecht: Foris,
1981.

[3] N. Chomsky: Some concepts and consequences of the theory of
Government and Binding. Cambridge: MIT Press, 1982.

[4] N. Chomsky: Barriers. Massachusetts: MIT Press, 1986.

[5] N. Chomsky: The minimalist program. Massachusetts: MIT Press, 1995.

[6] L. Haegeman: Introduction to Government and Binding 2nd Edition.
Oxford: Blackwell, 1994.

[7] D. Tatar: Inteligenta arificiala. Cluj-Napoca: Editura Albastra, 2001.

	1. Introduction
	2. The principles and transformations
	3. The variables type of the field “variables”
	4. The “structuredescription” field
	4.1 The two different kinds of variables
	4.2 The tree operators
	5. The field “structurecommands” of principles and transformations
	5.1 The variables and their use
	5.2 The Transformations in the “structurecommands” field
	5.3 The Grammar variables in the “structurecommands” field
	5.4 Checks in the “structurecommands” field

	6. Examples

