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Abstract 
The developed methods of control are in general based of laws of linear 
controls, however the operation of realized controllers go over to non-linear 
domain because of motor-voltage limit. 
This paper investigates the features of non-linearity and uses some model-
process which improve adaptiv properties of this type non-linear control. This 
process are based on  the analysis of function relationship of parameters 
investigated by simulation of control model. 
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Introduction 
 
At position control of robots is desirable the approach aperiodic of 
target, without overshooting.  
Control can shift from overdamped to underdamped mode while 
following a single trajectory. Underdamped control is undesirable in an 
industrial robot, as overshot can cause damage  to the objects the robot is 
manipulating, hence, controllers are tuned to give near critically damped 
response at normal operating speed. At high speed the inertial loads 
change rapidly, and at low speed some robots move with noticeable 
vibration [1]. 
All these dynamic effects generate disturbances  
which cause errors in following of trajectory, hence robot designers try 
to keep the loop-gains as high as  
possible. Adaptive control systems adjust the gain 
of the control loops in order to maintain critical damping over a range of 
manipulator configuration. 
 
It is known that many controllers of robot are non-linear. The gain of 
control for a critical damped case is calculable with classic methods for 
linear control loops, however we can only give an approach for non-
linear control loops. With advanced  simulation methods ( e.g. Matlab 
Simulink) we can model the real system nearly in the desired level of the 
operation, consequently we can derive such results from the simulation 
which are utilised in the design. 
The aim of this thesis to create a model for adaptiv non-linear position-
control, in which an experimental function takes the influences of  the 

  



changing inertia into consideration for the gain, which is desirable while 
the robot is moving. 
This functions are based on running  many simulations. The Fig.1 shows 
the model.  

 
Figure 1: Model of position controlled robot link drived by permanent 
magnet DC motor. 
 
There is no current limitation in this model. The gain is P-type, the loop 
is 1-type because of the integration. Θr is a rotation reference signal . 
 If  we  take an axis 1st of an R6-type robot into consideration when the  
2nd and 3rd axis are moving,  the value of inertia can be changed  by the 
variation of configuration maybe in ratio 1:100. 
We can preset the value of Coulomb and viscous friction in the model. 
With regarding to the effect of friction-reduction  of  PWM controlled 
motor, we  
set the value of Coulomb friction low.  Practically there is not backlash 
in modern robot-constructions.  
The value of the load torque is zero in steady-state,  there is not contact 
force during  the movement of the robot TCP, since the movement of the 
robot is unrestricted. The gear-ratio is 1:30.  
 
1. The features of non-linearity 
 
In this case the non-linearity of control-loop  derives from voltage-limit  
which  is  36V in our case.   
This value of voltage permits a speed of the 1st link to 3.5 rad/s. This 
speed is sufficient to follow relatively low frequency  or amplitude of 
input signals (Fig.2,3). 
 

 



 
Figure 2: Influence of saturation-type non-linearity in case of sinusoidal 
input, ωin =const 
 

 
Figure 3: Speed curves in case of saturation: ωin=const, Xi=1.8 and 6 rad 
 
The well-known features are as follows [4]: 
 -   the value of output signal depends on also magnitude of input signal, 
 -   the method of the descriptive-function is based on the following 
conditions :  
      -  the values of the parameters  of non-linear elements  are stable in 
time, 
   
    -  there are not constant and subharmonic components  in the output 
signal, 
      -  the output signal is periodic and their frequency is equal to the 
frequency of   the input signal, 
     -  there is only one non-linearity in the loop. 
The disadvantages are detailed as follows: 
-      verification of accuracy is difficult in this way; 
- the process  can be used  for only quantitative estimation; 
- the  behavior in time-domain is not can be estimated. 
The features of the  non-linearity, which is applied in our model is 
shown in Fig . 4.  

 



 
Figure 4: The describing-function of saturation-type non-linearity      
 
In the method of describing-function we take only into account the 1st 
harmonic [4]: 

Xo1(t)=B1sinωt+A1cosωt.         Be it: 
 
C1=(B1

2+A1
2)1/2, sinφ1=A1/C1, cosφ1=B1/C1. With this is describable:  

Xi(jω)=B,  Xo1(jω)=C1ejφ1.  
   
According to the method of describing-function,  the quotient of signal 
amplitudes  of output Xo  and input Xi  can be given by the following 
expression :  
N(B,jω)=C1(B,jω)ejφ1(Bjω)/B,       where 
 
 Xi(jω)=B,    Xo1(jω)= C1ejφ1. It is shown in the figure that in linear 
section the transfer constant is An.  If the amplitude of input is 
sinusoidal, if Xi=B>b then output Xo is shaped cut away. 
xo(t)=Anxi (t)= AnBsinωt,       0   ≤  ωt   ≤  α, 
xo(t)= Anb,                              α   ≤  ωt   ≤  π-α,  
xo(t)= An xi (t)= AnBsinωt,    π-α ≤  ωt = π, 
where b is an input-value produce the saturation, 
 
and α=sin-1 (b/B).   A1=0, 
                α                              π- α                              π 
BB1=(2/π)  ∫  AnBsin ωtdωt+2/π ∫ A2

nb sinω dωt+ +2/π ∫ AnB sin ωtdωt 2

0                                        α                                π- α 
After integration  
 
BB1=(2/π) AnB[α+ sin2α/2]. 
 
Here C1=B1 and φ1=0,   N(B,jω)=(2/π)An[α+sin2α/2]=N(B),   B≥ b. 
 
If  B>b, the value of the function is less then An, but if B≤b, the behavior 
of the function is the same as the behavior of the linear element with  
value An . 
 
The above-mentioned features are shown in Fig 5. 
 

 



 
Figure 5: Influance of saturation ωin=1,3,6 rad/s, Xi=const 
 
Here the maximum speed of angle is ω=3.5 rad/s,  and this is not able to 
follow a bigger speed input signal.  The maximum gradient of output Xo    
(see in Fig. 5) means the limit of speed, which is derived from the 
voltage limit of the motor. 
 
The saturation-type non-linearity have an effect  on accuracy of 
following which is an another important feature of control. 
If input of the control demands a higher speed at output then as possible 
due to the saturation, this can cause a very significant distortion (see  
Fig. 6).  
Parameters of employed sinusoid signals for investigation and the 
computed maximum values of speeds from this are shown in title of 
figures. 
 

 



 
Figure 6: Distortion of output signal due to the saturation. ω=25.12 rad/s, 
Xi variable 
 
 
Because of the saturation the possible value of speed is ω=3.5 rad/s (on 
1st axis) as mentioned in introduction. The Fig. 7 shows the curve of 
speed on peaks which of looks the distortion if the speed is in the domain 
of non-linearity. 
 

 
Figure 7: Distortion of speed-curves due to non-linearity 
 
The features of following are of minor importance in usual tasks of 
robotics when the robot approaches their target but in case of following 
of the trajectory it’s very important to follow punctually the input of the 
control, mostly in the movement rectilinear or circular, otherwise this  
link of the robot will no in the position  required in time prescribed. 
Hence maybe no realized the 
 coordinated movement among in axis of robot, consequently the 
movement will no the shape prescribed. 
In the figures below the computed speed of input is ω=3.5 rad/s, in this 
way is attained the condition of linear operation. The visible alterations 
are derived from the changing the values of the gain, the inertia and the 
friction. The Fig. 8 shows the output signal of the position control 
regarding to changing the gain Kp ( here the inertia and friction are 
constant). 
is in the domain of non-linearity. 

 



 

 
Figure 8: Features of following at changing gain, Kp  
 
The figure  9 shows the influance of changement of  Viscous-friction, at 
values 0.09 and 0.0009. Here the gain Kp=1200, ω=25.12 rad/s, J=0.05 
kgm2. 

 
Figure 9: Influance of changement of Viscous-friction 
 
The alterations timely or in shape indicate the features of followings. 
The influance of Viscous –friction is of no significance, 5-15 
millisecond delay, is can be shown only by magnifying. 
The influance of changing of values of the inertia and the gain are more 
important 

 



in the delay however this cause no distortion.  
It’s known that delay decreases with application the higher value of gain 
and this is noticeable in that cases too. Considering that the setting time 
of position control is also decreasing at higher value of gain, it is 
expedient to set the gain to a possible  highest value. 
 
2. Improving the adaptivity of control 
 
2.1. Finding  the values of function Kp(Θr) and Kp(J) 
 
For improve the adaptivity of non-linear control we need to know the 
relationship between the suitable gain and the actual values of inertia. 
Running the model, the gain (Kp) was variable, while the reference 
signal of angle of rotation (Θr)  and  inertia (J) were constant. Here J 
means J reduced. 
We  have done numerous  model-runs to find the value of gain which 
produces a minimal time aperiodic course. In these investigations Θr was 
changed between 0.0001 and 6 radian, and J changed between  0.0005 
and 0.05 kgm2. The was resulted curves Kp(J) at Θr=const  are shown in 
Fig. 10 
 

 
Figure 10: Kp(J) functions of  control loop (see fig.1), resulted minimal 
time aperiodic approaches. 
 
Note that the influence of change of inertia decreases at values higher 
Θr. 
 
We can draw that in strongly  saturated non-linear position control the 
function between the critical gain-values  and inertia  is  near hyperbolic. 
 

 



2.2. Approximations  with 2nd, 3rd, 4th, 5th order 
polynoms.   
 
 The coefficients calculated by Matlab process.  The ones of curves are 
shown in Fig. 11.  

 
 
 Figure 11: 2nd, 3rd, 4th and 5th order approximations of Kp(J) function.  
 
The curve 5th order are can not be used, because  their inaccuracy  is 
unacceptable at values between 0.03-0.05 of J.  
The application  of the curve 2nd and 4th order  is possible with 
compromise,  because the values of Kp at values J=0.025-0.045 is too 
less. 
The approximations  with polynoms result  lower inaccuracy  in those 
cases, when the reference  signal is  higher. 
 
2.3. Approximations  with a hyperbolic function 
 
In the  case Θr=const  we can fit a hyperbolic function on the Kp(J) 
curve.  
It can be  fitted a function given by expression Kp=[350/J0.21 +130]  on 
Θr. This function was derived from investigations (see Fig 12.) The 
shape of this function reflects  the monoton nature  of the function Kp(J) 
better. 
 

 



 
Figure 12: Approximation of the Kp(J) function with hyperbolic 
 
The adaptive position control model which uses a hyperbolic 
approximation function can be shown in Fig. 13. 
 
 

Figure 13: Inertia-adaptiv control model operating with a Kp(J) function 
 
 
The control loop given by an actual value of inertia calculates  the actual 
value of  gain Kp.  Deficiency of that model it does not take into 
consideration the function Kp(Θr), so it is necessary  to reduce Kp to its 
critical value. 
 
 
Conclusions 
 
The operation of saturation type non-linear position control can properly 
be modeled and investigated  with simulation methods.  

 



In the task to following a trajectory it is need to use the control in linear 
domain. For this it’s important to compute the speed at the trajectory 
beforehand and then to set the input of control as no higher then what 
provides the operation of control in linear domain.  
 It was found that the minimum time aperiodic approach of the target can 
be solved even with highly change parameters.  These functions can be 
determined,  and their applications realize a better behavior in the course 
of operation of the control loop.  With a suitable fitting of these 
functions can be design a  non-linear adaptive position controller for 
hardly changing conditions. 
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