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Abstract: Recently it has been shown that sum and product are not the only operations that 
can be used in order to define concrete approximation operators. So, in Image Processing 
the sum and multiplication are not the only operations that can be used, but also, several 
other operations provided by fuzzy logic. In this sense, in the present paper, we will 
investigate how a pair consisting of a uninorm and an absorbing norm can be used for 
approximation purposes. We propose an approximation operator based on a continuous 
strictly increasing additive generator for the uninorm and on the same function used as a 
multiplicative generator for the absorbing norm. The proposed operator is defined based 
on the classical Shepard operator. We show that in Image Processing, the result of the 
proposed method outperforms in several cases the classical Shepard approximation 
operators based on sum and product operations. 

1 Introduction 

In classical Functional Analysis and classical Approximation Theory, the 
underlying algebraic structure is the linear space structure. The mathematical 
analysis using nonlinear mathematical structures is called idempotent analysis (see 
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[10]) or pseudo-analysis (see [13], [12]) and it is shown to be a powerful tool in 
several applications. 

Recently we proposed the same problem in Approximation Theory i.e., is the 
linear structure the only one that can be used in the classical Approximation 
Theory? Moreover, are the addition and multiplication of the reals the only 
operations that can be used for defining approximation operators? All the 
approximation operators need to be linear? The answer to this question is 
negative, and in this sense in [3] max-product Shepard approximation operators 
are studied. Also, in [4] Pseudo-Linear Approximation Operators are studied from 
the theoretical point of view and it is shown that even a parametric family of 
operators can be used for approximation purposes instead of the sum and 
multiplication of the reals. The idea of the possible usefulness of these operators is 
coming from Fuzzy Logic. For example in [5], normal forms are regarded as 
approximations, and this lead us to the idea that sum and addition are not the only 
operations which can be used in approximation theory. 

We will continue in the present paper this line of research by studying Shepard-
type approximation operators based on a pair consisting of a uninorm and an 
absorbing norm. Uninorms were introduced by Yager and Rybalov [15] as a 
generalization of t-norms and t-conorms. For uninorms, the neutral element is not 
forced to be either 0 or 1, but can be any value in the unit interval. Absorbing 
norms are a generalization of the well-known median studied in [9]. For a more 
general treatment of this operator, we refer to [7]. For the absorbing norm (see 
[2]), a given element is absorbing, i.e. the absorbing element if it is composed with 
any other element the result is the absorbing element itself. 

We use in the present paper a pair of operations which are distributive one with 
respect to the other. As a consequence we will use a uninorm based on an additive 
generator and an absorbing norm based on the same (but now multiplicative) 
generator. Such a pair of operations ensures that the distributivity property holds. 

Surely any approximation operator can be used in Image Processing (for example 
in zooming, compression, etc). In the present paper we propose also to investigate 
whether a pair consisting of generated uninorm and absorbing norm can be used in 
Image Processing. 

After a preliminary section, we define and study in Section 3 the approximation 
method using them as operations instead of sum and product. Surely any 
approximation method can be used immediately in Image Processing. In Section 4 
we present some numerical results which show the effectiveness of the proposed 
method compared with sum-product based classical Shepard approximation 
operators. At the end of the paper some conclusions and topics for further research 
are given. 



2 Preliminaries 

2.1 Uninorms and Absorbing Norms 

Firstly let us recall the definitions and some properties of uninorms and absorbing 
norms. 

Definition 1 ([15]) A uninorm ⊕  is a commutative, associative and increasing 
binary operator with a neutral element [0,1]∈e , i.e., for all [0,1]∈x  we have 

.⊕ =x e x  

Definition 2 ([2]) An absorbing norm  is a commutative, associative and 
increasing binary operator with an absorbing element [0,1]∈a , i.e. 
( [0,1])( ) )∀ ∈ =x x a a . 

In the present paper we will use the so-called representable uninorms. These are 
defined as follows. Given (0,1)∈e  and a strictly increasing continuous [0,1]→ R  
mapping h  with (0) = −∞h , ( ) 0=h e  and (1) = +∞h . The binary operator ⊕  
defined by 

1( ( ) ( ))−⊕ = +x y h h x h y  

for any 2( , ) [0,1] {(0,1), (1,0)},∈ −x y  and either 0 1 1 0 0⊕ = ⊕ =  or 
0 1 1 0 1⊕ = ⊕ = , is a uninorm with neutral element e . The class of uninorms that 
can be constructed in this way has been characterized [8]. 

Let us consider now the operation 
1( ( ) ( )).−=x y h h x h y  

Then is is easy to check that the distributivity of  w.r.t. ⊕  holds. 

Theorem 1   Given e  and h  as above, then the operation  has the following 
properties: 

(i) The operation  is an absorbing norm, having e  as absorbing element. 

(ii) The element 1(1)−′ =e h  is neutral element w.r.t. .  

(iii)  is distributive with respect to .⊕  

Proof   (i) It is easy to check that  is commutative, associative and increasing. 
Also, by direct computation it follows that 1(0) , (0,1),−= = ∀ ∈x e h e x that is, e  
is absorbing element. 

(ii) It is easy to check that 1( ( ) 1) .−′ = ⋅ =x e h h x x  



Remark 1   Nullnorms are absorbing norms fulfilling some boundary conditions. 
In our case the boundary conditions are not satisfied. Instead, on the boundaries, if 
we pass to limit, we get 
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Let us also observe here the strong relationship between pseudo-analysis and our 
proposed pairs of operations. The algebraic structure induced by the above 
described pair of operations is a semiring as in the case of pseudo-analysis. 

2.2 Approximation Operators 

Let us recall that the main problem solved by classical approximation theory is to 
approximate a function : [ , ]→f a b R , where [ , ]a b  is a real interval, by some 
more simple function, e.g. (trigonometric) polynomial, rational function or 
wavelet. Crisp approximation theory provides many different approximation 
operators: Bernstein polynomials, Shepard-type rational approximation operators, 
Jackson-type trigonometric polynomials, wavelets (see e.g. [6]), to mention only a 
few. These operators are using exclusively sum and product of the reals as 
operations, and so, the linear structure over R  as underlying algebraic structure. 
Usually, the form of such an operator is 

0

( , ) ( , ) ( ),
=

= ⋅∑
n

n n i i
i

L f x K x x f x  

where [ , ]∈ix a b , 0,...,=i n  are the knots and ( , )n iK x x  are functions having 
relatively simple expression (polynomials, trigonometric polynomials, rational 
functions, wavelets). 

Let us observe that all these operators are linear with respect to the target function 
to which they are associated i.e., 

( , ) ( , ) ( , ), , : [ , ]+ = + ∀ →n n nL f g x L f x L g x f g a b R . 

Usually, the error estimates in crisp approximation theory are provided in terms of 
the modulus of continuity. So, let us recall it's definition and main properties 
adapted to our case (for the general definition see [6]). 



Definition 3   Let : [ , ]→f a b R  be a function. Then ( ), : [0, ) [0, ),⋅ ∞ → ∞fω  
defined by 

( ) ( ) ( ){ }, sup | |; , ,  | |= − ∈ − ≤f f x f y x y X x yω δ δ  

is called the modulus of continuity of .f  

3 Approximation Operators Based on a Uninorm and 
an Absorbing Norm 

Let us consider a continuous target function : [ , ] [0,1]→f a b . Let also, 
[ , ]∈ix a b  be sampled data (i.e. we suppose that the values ( )if x  are known). 

The idea of defining nonlinear approximation operators is very simple. We change 
the addition to a uninorm and multiplication to absorbing norm, in the 
approximation operators, i.e. the general discrete form of such an operator is 

                             (1) 

 

where 2
, ( ) : [0,1]→n iB x X  are some given continuous functions, 1,...,=i n . 

Let us denote by ([ , ])C a b  the space of continuous functions : [ , ] .→f a b R  

The operator : ([ , ]) ([ , ]),→nP C a b C a b  ( , ) =nP f x ,
0

( ) ( ),
=
⊕

n

n i i
i

B x f x  is 

continuous and satisfies the property 

( , ) ( , ) ( , ).⊕ = ⊕n n nP f g x P f x P g xα β α β  

In the present paper we use Shepard kernels: 
1
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The classical Shepard approximation operator is 

,
0

( , ) ( ) ( ).
=

= ∑
n

n n i i
i

Sh f x A x f x  

Let us transform the Shepard kernel by 1,−h  i.e., let 

1
,

−=n i iB h A  

,
0

( , ) ( ) ( ),
=

=⊕
n

n n i i
i

P f x B x f x



and let ( , )nP f x  given as in (1). 

Theorem 2 ([14]) For the error in approximation by the classical Shepard operator 
given above we have the following Jackson-type estimate 

( ) 1| , ( ) | , ,⎛ ⎞− ≤ ⎜ ⎟
⎝ ⎠

nSh f x f x C f
n

ω  

where C  is some absolute constant. 

Analogously in the case of using the proposed operators we get the same error 
estimate. 

Theorem 3   Let ( ),nP f x  be the operator given above and the operations ⊕  and 
 generated by a Lipschitz-type generator. Then the following Jackson-type 

estimate holds true 

( ) 1| , ( ) | , ,⎛ ⎞− ≤ ⎜ ⎟
⎝ ⎠

nP f x f x C f
n

ω  

where C  is some absolute constant. 

Proof   It is easy to check that 
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P f x B x f x h A x hf x  

Then, by using the Lipschitz property for 1,−h  the error can be estimated as 
follows: 

1 1
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1
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1
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P f x f x h A x hf x h hf x
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1L  being the Lipschitz constant of 1.−h  If we apply now the classical error 
estimate for the Shepard approximation operator, we get 

1 1 2
1 1| ( , ) ( ) | , , ,⎛ ⎞ ⎛ ⎞− ≤ ≤⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
nP f x f x L C hf L L C f

n n
ω ω  

where 2L  is the Lipschitz constant of ,h  and the theorem is proved. 

It is now straightforward the following corollary which is a Weierstrass-type 
theorem for the proposed Shepard-type approximation operators. 



Corollary 1   Any continuous function : [0,1] [0,1]→f  can be arbitrarily closely 
approximated by Shepard-type approximation operators based on uninorm 
absorbing norm pair. 

However all the properties are straightfoward and however the method is based on 
the classical approximation result, it worth study, because firstly, the result 
obtained for approximation of the target function is different and also they are 
different seen as approximation operators, one being linear and the other is not 
linear. 

4 Image Processing Experiments 

We perform in this section some preliminary image processing experiments by 
using Shepard-type approximation operators based on uninorms and absorbing 
norms. Let us regard the following results as competition between addition, 
multiplication pair and other pairs of operations in the framework of image 
processing. 

The compression method used in this comparison is to simply select one point 
from each image block of ×n n  pixels (upper left corner) and deleting the rest. 

The decompression step is as follows. Having the interpolation points selected as 
in the previous step we compute the values in the missing points by using the 
proposed approximation operators with the sliding neighborhood method. 

As generators of the uninorm and absorbing norm operations we have used 

( ) ln ,
1

=
−

a

a

xh x
x

 (2) 

which generates a parametric family of approximation operators. The neutral 
element of the uninorm in this case is 1

1

2
.

α
 This parametric family of operations, 

for 1=α  contains the famous 3 PI oeration. 

We present three experiments. In the first and second experiment, original images 
Lenna and Text are compressed with compression rates 1

4 ,  1
9  respectively. The 

decompression results are presented in Fig. 1, and Fig. 2 respectively. 



 
Figure 1 

Decompression result for Image Lenna, compression rate ¼, operations generated by (2), parameter 
a=1.25 

  
Figure 2 

Decompression result for Image Text, compression rate 1/9, operations generated by (2), parameter 
a=1 

The results show that the pair consisting of a uninorm and absorbing norm can be 
used in Image processing as alternatives of sum and product operations. 



In the third experiment image Text is compressed with the compression rate 1
16 .  

by using sum and multiplication and then using uninorm absorbing norm, for 
different values of the parameter .α  

 
Figure 3 

Decompression result for Image Text, compression rate 1/16, operations sum and product 

 
Figure 4 

Decompression result for Image Text, compression rate 1/16, operations generated by (2), parameter 
a=2.25 

In Fig. 3 and Fig. 4 the result of the decompression can be compared. Visually the 
quality is approximatively the same. For a more accurate comparison we compare 



the decompression quality by using the RMSE. The dependence of the RMSE 
w.r.t. α  is shown in Fig. 5. 

Let us remark here that the RMSE for image Text, when using classical Shepard 
approximation operator was 28.5981. 

 
Figure 5 

Dependence of the rmse of the decompression results for Image Text, compression rate 1/16 with 
respect to the parameter a 

If we regard the results presented above as a competition between the classical and 
other operations we can observe that the addition and product are outperformed in 
this experiment by pairs of uninorm absorbing norm. 

Conclusions and Further Research 

We have proposed the use of a pair of generated uninorm and absorbing norm in 
Approximation Theory and in Image Processing. The theoretical study shows that 
the main properties are conserved. 

As a conclusion of the experiments proposed in the previous section it is easy to 
see that the sum-product based approximation is sometimes outperformed by our 
proposed method. Another promising research topic is the use of the proposed 



approximation operators for noise reduction in images. Surely more practical 
image compression methods can be imagined. 

References 

[1] J. Aczél: Lectures on Functional Equations and their Applications, 
Academic Press, New York, 1966 

[2] I. Batyrshin, O. Kaynak, I. Rudas: Fuzzy Modeling Based on Generalized 
Conjunction Operations, IEEE Transactions on Fuzzy Systems, Vol. 10, 
No. 5 (2002), pp. 678-683 

[3] B. Bede, H. Nobuhara, K. Hirota: Max Product Shepard Approximation 
Operators, Journal of Applied Computational Intelligence and Intelligent 
Informatics, to appear 

[4] B. Bede, H. Nobuhara, A. Di Nola, K. Hirota: Pseudo-linear 
Approximation Operators, submitted 

[5] M. Daňková, M. Štepnička: Fuzzy Transform as an Additive Normal Form, 
Fuzzy Sets and Systems, 157(2006) 1024-1035 

[6] R. A. DeVore, G. G. Lorentz: Constructive Approximation, Polynomials 
and Splines Approximation, Springer-Verlag, Berlin, Heidelberg, 1993 

[7] J. Fodor: An extension of Fung-Fu's Theorem, Internat. J. Uncertain. 
Fuzziness Knowledge-Based Systems 4 (1996), 235-243 

[8] J. Fodor, R. Yager, A. Rybalov: Structure of Uninorms, Internat. J. 
Uncertain. Fuzziness Knowledge-Based Systems 5 (1997) 411-427 

[9] L. Fung, K. Fu: An Axiomatic Approach to Rational Decision-making in a 
Fuzzy Environment, Fuzzy Sets and their Applications to Cognitive and 
Decision Processes (K. Tanaka, L. Zadeh, K. Fu, M. Shimura, eds.), 
Academic Press, New York, San Francisco, London, 1975, pp. 227-256 

[10] V. P. Maslov, S. N.Samborskii: Idempotent Analysis, Adv. Soc. Math. 13, 
Amer. Math. Soc. Providence, RI, 1992 

[11] R. Mesiar, J. Rybárik: Pan-operations Structure, Fuzzy Sets and Systems, 
74(1995), 365-369 

[12] E. Pap, K. Jegdić: Pseudo-analysis and its Application in Railway Routing, 
Fuzzy Sets and Systems, 116(2000), 103-118 

[13] E. Pap: Pseudo-additive Measures and their Applications, in Handbook of 
Measure Theory (E. Pap, ed.), Elsevier Science B.V., 2002 

[14] J. Szabados: On a Problem of R. DeVore, Acta Math. Hungar., 27 (1-
2)(1976) 219-223 

[15] R. Yager, A. Rybalov: Uninorm Aggregation Operators, Fuzzy Sets and 
Systems 80 (1996) 111-120 


