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Abstract: Hydraulic differential electric servo cylinders are electromechanical tools 
applicable for driving e.g. manipulators. Actual models are strongly nonlinear, coupled 
systems of differential equations. In the present paper we propose a new model using fuzzy 
differential equations under strongly generalized differentiability concept. The key point is 
a continuous fuzzyfication of the signum function. Numerical solutions of the fuzzy 
differential equations are proposed by using an Euler-type method. 

1 Introduction 

Hydraulic drives have advantages with respect to DC motor driven systems in 
several applications. The actual classical models of the Hydraulic Differential 
Cylinders (HDC) are systems of highly nonlinear coupled differential equations. 
(see e.g. [4], [10s]). The most important phenomena influencing their behavior, as 
e.g. warming up of the sliding surfaces are determined by local effects, and cannot 
be modeled accurately by a crisp system. Also the actual models of the friction 
forces show discontinuous variation at the zero transition of the piston's velocity 
that is a locally nonlinearizable nonlinearity in the classical theory of dynamical 
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systems. A common PID-type controller may generate noise-like acceleration 
signal due to feeding back the effects of such fluctuations. Warming up of the 
working fluid during operation influences these friction properties, too. Dynamic 
interaction between the system and its environment neither measured nor modeled 
is another agent influencing the system's behavior. 

The above discussion shows us that, the classical model of HDC contains several 
terms which are subject of non-statistical uncertainty. The frictional term and the 
exterior disturbance force are the main such terms. In order to take into account 
these uncertainties and to build up a more accurate model we propose in the 
present paper the use of fuzzy differential equations (FDEs). 

Fuzzy differential equations appear natural as tools for modeling dynamical 
systems under uncertainty. Till now, they are rarely used in modeling real-world 
systems since their theory was developed relatively recently. As it is shown in 
several recent papers, FDEs are not just an easy extension of the theory of ODEs 
to the fuzzy case (see e.g. [7], [8], [1]). This fact is also slowing down the 
extension of the applicability of fuzzy differential equations. There are several 
different interpretation of the notion of FDE (for a discussion about them please 
refer to [1]). In the present paper we will use the so called strongly generalized 
differentiability introduced recently as a method which solved some problems 
with the other FDE concepts as H-derivative (see [9]) or fuzzy differential 
inclusions (see [5]). 

Strongly generalized differentiability was introduced in [2]. The strongly 
generalized derivative is defined for a larger class of fuzzy-number-valued 
functions than the H-derivative and fuzzy differential equations can have solutions 
with decreasing length of their support (this was not the case for the H-derivative). 
Also, contrary to the case of differential inclusions, the derivative concept for 
fuzzy-number-valued function is defined and this makes this method more 
appropriate for numerical computation. First order linear fuzzy differential 
equations are investigated in [3] and the behavior of their solutions motivate us 
also to use the above cited results in the present paper for building a novel model 
for HDCs. 

The key point in our discussion is how to fuzzify the classical model in order to 
get meaningful conclusions. The key role in this fuzzification is that of the 
frictional term. In the present paper, following [5], we fuzzify the Signum 
function, but in a different way, by making this term also continuous! However we 
have gained the continuity of the frictional term, since it is a fuzzy one, we obtain 
a fuzzy solution for our model. The interpretation of this model is the fuzzy set of 
all attainable trajectories of the system. In the present paper we do not deal with 
the problem of control, this being subject of further research. 

After a preliminary section we propose in Section 2 the fuzzy Frictional term, 
which becomes in this way continuous in contrast with its crisp correspondent. 
Here we present also some preliminary results how friction is modeled by using 



this function. In Section 3 we propose the fuzzy model of the Hydraulic 
Differential Servo Cylinder. We end up with some conclusions and further 
research topics. 

2 Preliminaries 

We denote by RF  the space of fuzzy numbers. For 0 1,< ≤r  denote 

[ ] { ; ( ) }= ∈ ≥Rru x u x r  and 0[ ] { ;  ( ) 0}.= ∈ >Ru x u x  Then it is well-known that 
for any [0,1],∈r  [ ]ru  is a bounded closed interval. For , ,∈RFu v  and ∈Rλ , 
the sum +u v  and the product ⋅uλ  are defined by [ ] [ ] [ ] ,+ = +r r ru v u v  
[ ] [ ] ,⋅ =r ru uλ λ  [0,1].∀ ∈r  

Let : {0},+× → ∪R R RF FD  

[0,1]( , ) sup max{| |,| |},∈ − − + += − −r r r r
rD u v u v u v  

be the Hausdorff distance between fuzzy numbers, where [ ] [ , ],− +=r r ru u u  
[ ] [ , ].− +=r r rv v v  In this case ( , )RF D  is a complete metric space. The above 
operations and the metric space structure allows us to build a mathematical 
analysis over the space of fuzzy numbers, however some problems appear due to 
the lack of some properties. 

The so called H-difference or Hukuhara difference will play a key role in the 
present paper. Let us recall its definition. 

Definition 1 (see e.g. [9])   Let , ∈RFx y . If there exists ∈RFz  such that 
,= +x y z  then z  is called the H-difference of x  and y  and it is denoted by 

.x y  

In this paper the " " sign stands always for H-difference and let us remark that 
( 1) .≠ + −x y x y  We will denote for simplicity ( 1)+ −x y  by .−x y  

Let us recall the definition of strongly generalized differentiability proposed in [2]. 

Definition 2   Let : ( , ) → RFf a b  and 0 ( , ).∈x a b  We say that f  is strongly 
generalized differentiable at 0 ,x  if there exists an element 0( ) ,′ ∈RFf x  such that 

(i) for all 0>h  sufficiently small, 0 0( ) ( ),∃ +f x h f x  0 0( ) ( )−f x f x h  and the 
limits (in the metric )D  

0 0 0 0
00 0

( ) ( ) ( ) ( )
lim lim ( ),

+ − ′= =
h h

f x h f x f x f x h
f x

h h
 



or 

(ii) for all 0>h  sufficiently small, 0 0( ) ( ),∃ +f x f x h  0 0( ) ( )−f x h f x  and the 
limits 

0 0 0 0
00 0

( ) ( ) ( ) ( )
lim lim ( ),

( ) ( )
+ − ′= =

− −h h

f x f x h f x h f x
f x

h h
 

or 

(iii) for all 0>h  sufficiently small, 0 0( ) ( ),∃ +f x h f x  0 0( ) ( )−f x h f x  and 
the limits 

0 0 0 0
00 0

( ) ( ) ( ) ( )
lim lim ( ),

( )
+ − ′= =

−h h

f x h f x f x h f x
f x

h h
 

or 

(iv) for all 0>h  sufficiently small, 0 0( ) ( ),∃ +f x f x h  0 0( ) ( )−f x f x h  and 
the limits 

0 0 0 0
00 0

( ) ( ) ( ) ( )
lim lim ( ).

( )
+ − ′= =

−h h

f x f x h f x f x h
f x

h h
 

( h  and ( )−h  at denominators mean 1 ⋅h  and 1 ,− ⋅h  respectively). 

We say that a function is (i)-differentiable if it is differentiable as in the previous 
Definition gdif1, (i), etc. 

The following theorems concern the existence of solutions of a fuzzy initial value 
problem under generalized differentiability (see [2]). 

Theorem 1   Under some relaxed conditions (for which the reader is asked to 
consult [2] the fuzzy initial value problem 

0 0

( , )
( )
′ =⎧

⎨ =⎩

y f x y
y x y

 

has two solutions (one (i)-differentiable and the other one (ii)- differentiable) 

0 0 0, : [ , ] ( , )+ →y y x x r B y q  and the successive iterations 

0 0( ) =y x y  

0
1 0( ) ( , ( )) ,+ = + ∫

x

n nx
y x y f t y t dt  

and 

00 ( ) =y x y  



0
01( ) ( 1) ( , ( ))+ = − ⋅ ∫

x

n nx
y x y f t y t dt  

converge to these two solutions respectively. 

According to the previous Theorem Peano, we restrict our attention to functions 
which are (i) or (ii)-differentiable on their domain except a finite number of points 
(see also [2]). 

The FDEs will have in the present paper will have input data trapezoidal fuzzy 
numbers. We recall that for < < <a b c d , , , , ∈Ra b c d , the trapezoidal fuzzy 
number ( , , , )=u a b c d  determined by , ,a b c  and d  is given such that 

( )− = + −ru a b a r  and ( )+ = − −ru d d c r  are the endpoints of the −r  level sets, for 
all [0,1]∈r . 

3 The Fuzzy Friction Term 

The key point in our model is played by the friction term. Since the friction term's 
(Stribec's force) discontinuity is induced by the signum function. According to 
several authors this term is responsible for the fact that the model consists of 
highly nonlinear differential equations. 

Recently, in [5] the friction term was replaced by a fuzzy term. Then the equation 
of dry friction was modeled by fuzzy differential equations, in that case the 
interpretation being as system of differential inclusions. In our case we fuzzify the 
signum function similarly to [5], but simultaneously we transform it to a 
continuous term. As a conclusion, the signum function will be in our model 
continuous fuzzy-valued function and the friction force as well. The trapezoidal-
valued signum function is 

( ) ( )22
,

1,  if 

( ) 1, 1 ,1 ,1 , , ,0 ,  if .

1,  if 

+

⎧− ≤ −
⎪⎪= − − + − − − − ⋅ <⎨
⎪

>⎪⎩

v

Sgn v v v

v

δ δ
ε δ ε ε ε

ε

δ δ ε

ε

 (1) 

It is easy to see that 

,, 0

1,  if 
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→
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⎪
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v
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which coincides with the interval-valued signum function proposed in [5] (the 
convergence is understood surely only pointwise). 

4 Experimental Results 

In this section we solve the equation of dry friction. This problem was studied also 
in [5], employing the interpretation with differential inclusions. Let us remark 
here, that in [5] the existence of periodic solutions is investigated, but the equation 
is not solved. In the present paper we solve numerically this equation under 
different types of control signals. 

The fuzzy differential equation modeling dry friction is 

( ) ( ),′′ ′ ′+ + ⋅ + =y y Sgn y y u tα μ  (2) 

where , ∈Rα μ  are positive constants, ( )u t  is a control signal and the signum 
function ( )′Sgn y  is given by (1) in our model. The coordinate : →R RFy  is 
considered to be a trapezoidal fuzzy number valued function. The initial 
conditions are considered to be crisp values. 

In order to solve the equation we rewrite it as a system of first order FDEs as 
follows 

.
( ) ( )

′ =⎧
⎨ ′ = − − ⋅ −⎩

y v
v u t v Sgn v yα μ

 

The initial values are (0) 0=y  and (0) 1=v  and the control signal is ( ) sin .=u t t  

Each of the above equations may have locally two solutions given by Theorem 
Peano 

0

0

1 0

01

( ) ,  or

( ) ( 1) ,

+

+

= +

= −

∫

∫

t

n nt

t

nn t

y t y v dt

y t y v dt
 

and 

0

0

1 0

1 0

( ) ( ( ) ( ) )  or

( ) ( 1) ( ( ) ( ) ) .

+

+

= + − − ⋅ −

= − − − ⋅ −

∫

∫

t

n n n nt

t

n n n nt

v t v u t v Sgn v y dt

v t v u t v Sgn v y dt

α μ

α μ
 

In order to solve the problem we will employ a numerical method based on the 
classical Euler method. We consider the approximation given by this method 



sufficient for our purposes. Surely theoretical study and implementation of more 
sophisticated methods is subject of future research. 

One step of the Euler's method in our case is given by 

( ) ( ) ( ),  or
( ) ( ) ( 1) ( )
+ = +
+ = −

y t h y t hv t
y t h y t hv t

 

and 

( ) ( ) ( ( ) ( ) ( ( )) ( )) or
( ) ( ) ( 1) ( ( ) ( ) ( ( )) ( )).
+ = + − − ⋅ −
+ = − − − ⋅ −

v t h v t h u t v t Sgn v t y t
v t h v t h u t v t Sgn v t y t

α μ
α μ

 

Since there may exist locally two solutions, if both of them exist we have to chose 
that one wich better reflects the behaviour of the real-world system modeled by 
the given equation. We propose to use and compare experimentally several choice 
functions. In the following numerical experiments we have put ( ) sin( ),=u t t  

1,=α  0.4,=μ  0.0001,=ε  0.6.=δ  These choice functions are: 

- First is choosing allways the "old" Hukuhara differentiable solution. Surely 
this is the most inconvenient choice, since uncertainty is allways increasing 
and in this case the uncertainty increases exponentially. This fact is 
illustrated in Fig. 1. 

 
Figure 1 

Hukuhara differentiable solution of the dry friction equation 



- Second is choosing solutions with increasing support if the "core", i.e. 
midpoint of the 1-level set is increasing in absolute value (this choice is 
based on the hypothesis that the uncertainty increases together with the 
value). In our model this is not consistent with the usual real behavior of the 
velocity. That is the static friction appears at velocity 0 and in this case 
around zero the uncertainty should increase. The solution of the FDE 
modeling dry friction is in this case presented in Fig. 2. 

 
Figure 2 

Solution under the second choice function 

- Third possible choice is that we select the solution with decreasing 
uncertainty, whenever it exists. That is we are searching for solutions which 
are as certain as possible. In this case we have obtained almost certain 
solutions. In our opinion this is not realistic. 

- Next is related to the previous possible choice function with the suplementary 
condition that we would like to maintain the uncertainty greater than a 
threshold value. The solution obtained this way is shown in Fig. 3. 



 
Figure 3 

Solution for which uncertainty do not decrease below a threshold 

- Again we choose if possible the solutions with decreasing uncertainty but we 
set a threshold value for the velocity, under which its uncertainty increases. 
Also, the uncertainty on the coordinate is not allowed to go below a threshold 
value. This choice is motivated by the physical properties of the system. The 
behavior of the solution is represented in Fig. 4. 

 



 
Figure 4 

Solution with the assumption that small velocity implies increasing uncertainty 

5 The Fuzzy Differential Equations of the Hydraulic 
Differential Servo Cylinder 

For modeling the operation of the cylinder we use fuzzy differential equations 
since the friction term as discussed in a previous section can be regarded as a 
fuzzy number. If y  denotes the linear position of the piston then its acceleration is 
determined by the fuzzy differential equation 

1 1 ( ) ,
⎡ ⎤⎛ ⎞′′ = − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

A B A f dy p p A F v F
m ϕ

 (3) 

where Ap  and Bp  denote the pressures in chamber A  and B  of the piston, ϕ  is 
the ratio of the active surfaces of the appropriate sides of the piston AA  and BA , 



m  is the mass of the piston, fF  denotes the force of the internal friction between 
the piston and the cylinder, dF  denotes the external disturbance forces. 

The fuzzy friction term fF  is given by 

( )| |

( ) ,−= + +
v

f c sF v Sgn v F F e αμ  

where ,( ) ( )=Sgn v Sgn vε δ  is as in (1). 

The oil-pressures in the chambers also depends on the piston's position and 
velocity, so these are modeled again by fuzzy differential equations 

( )( , )
( )

( , ) ,
( )

′

′

= − ⋅ + ⋅ ⋅

⎛ ⎞
= − ⋅ + ⋅ − ⋅⎜ ⎟

⎝ ⎠

o
A A A

A

o A
B B

B

E
p A v B K a p U U

V y

E A
p v B K a p U U

V y

ν ν

ν νϕ

 

where oilE  describes the elasticity of the working fluid establishing relationship 
between the relative volumetric compression and the increase in the fluid pressure, 
Bν  denotes the flow resistance, Kν  is the valve amplification, U  is the 
normalized valve voltage. The oil volumes in the pipes and the chambers are 
expressed as 

( )

( ) ( ).

= + ⋅

= + ⋅ −
A pipe A

B pipe A

V y V A y

V y V A H y
 

The functions a  contains again the signum function in its expression 

0 02
( , ) ( ) ,

2 2
+ − −⎛ ⎞= +⎜ ⎟

⎝ ⎠
t tp p p p p

a p U R Sgn U  

where ( ) ( ) ,=R x sign x x  here sign  denotes the usual crisp signum function and 
( )Sgn U  is a fuzzy term given as in (1). 

Conclusions and Further Research 

We have proposed a fuzzy model for dry friction and we have performed 
numerical experiments on it. These experiments show that the fuzzy model is 
more realistic that the crisp one. Indeed, the experiments show that if we set the 
parameter 0=ε  (term which determines the fuzzy signum function), that is if we 
consider the friction a crisp phenomenon then we have obtained solutions for 
which uncertainty is increasing exponentially. Also, if we set 1,=δ  that is we 
have an interval valued friction as proposed in [5], then in our experiments we did 
not obtained a stable solution. Since the experience shows that however the 



solution of the system is subject of uncertainty the velocity cannot be ,∞  we may 
suppose that our model is more realistic than crisp models. 

The behavior of the fuzzy model motivated us to propose in this paper a fuzzy 
model of a hydraulic differential cylinder. The fuzzy differential equations which 
are building our model can be solved in a similar way as the dry friction equations 
in the previous sections. The experimental study of the presented model as well as 
its experimental validation is subject of future research. 
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