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Abstract: The current paper presents a new approach using generic and meta-
transformations for generating platform-specific transformer plugins from model 
transformation specifications defined by a combination of graph transformation and 
abstract state machine rules (as used within the Viatra2 framework). The essence of the 
approach is to store transformation rules as ordinary models in the model space which can 
be processed later by the meta-transformations which generates the platform-specific 
(Java,C++, C#, etc.) transformer plugin. These meta rules highly rely on generic patterns 
(i.e. patterns with type parameters) which provide high-level reuse of basic transformation 
elements. As a result, the porting of a transformer plugin to a new underlying platform can 
be accelerated significantly. 
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1 Introduction 

Nowadays, the immense role of model transformation (MT) concepts and tools is 
unquestionable for the success of the model-driven system development (MDSD 
[3]) in order to capture the integration and evolution of models. In MDSD, models 
are frequently captured by a graph structure, and the transformations are specified 
as graph transformations. Informally, a graph transformation (GT [13,6]) rule 



performs local manipulation on graph models by finding a matching of the pattern 
prescribed by its left-hand side (LHS) graph in the model, and changing it 
according to the right-hand side (RHS) graph. 

Advanced model transformation tools usually separate the design (validation, 
maintenance) of a transformation from its execution by providing both tool 
dependent interpreter and standalone compiled plugins. Interpreters (also called as 
platform-independent transformers (PIT) in [4, 17]) ease the development (and 
testing, debugging and validation) of model transformations within a single 
transformation framework without relying on a highly optimised target 
transformation technology. Platform (language) specific transformers (PST) are 
compiled standalone versions of a model transformation in an underlying platform 
(e.g. Java) which is optimized for efficient performance. This transformer plugin 
is generated in a complex model transformation and/or code generation step. 

However, the implementation of these generators for platform-specific trans-
formers are typically use standard programming languages. As a consequence, it is 
difficult to port existing plugin generators to different platforms with conceptual 
similarities (e.g. from Java to C#). 

The current paper presents a new approach using generic and meta-
transformations for generating platform-specific transformer plugins from model 
transformation specifications defined by a combination of graph transformation 
and abstract state machine rules (as used within the Viatra2 framework). Our code 
generator for Java transformer plugins highly builds on the fact that 
transformation rules are stored as ordinary models which can be processed later by 
the meta-transformation which generates the Java transformer plugin. These meta 
rules highly rely on generic patterns (i.e. patterns with type parameters) which 
provide high-level reuse of basic transformation elements. As a result, the porting 
of a transformer plugin to a new underlying platform can be accelerated 
significantly. 

2 Overview of the Approach 

The proposed workflow of the meta-transformation for PST generation is 
summarized in Fig. 1. 

In Viatra2, transformations can be defined by the combination of graph 
transformation (GT [6]) and abstract state machines (ASM [5]). The Xform 
metamodel (to be discussed in details in Sec. 3.2) symbolizes the transformation 
metamodel, which consists of an ASM part for control structures and a graph 
transformation part for model manipulation. 



 
Figure 1 

Overview of the meta-transformation based generation 

The steps of the plugin generator transformation are the following: 

• As ASM and GT rules are processed differently, we separate them in the 
first step. 

• ASM rules are processed as an ordinary programming language 

• GT rules are processed in two substeps. The LHS of the rule should be 
handled as a GT pattern, while the action part described by the difference 
of RHS and LHS (and potencially additional ASM rules). 

• For each pattern call initiating a graph pattern matching process, different 
search graphs are generated. (See [18] for a detailed discussion of search 
graph generation) 

• An optimized search plan (i.e. traversal order of the pattern nodes) is 
generated for every search graph in order to sequence the matching of the 
GT pattern. 

• Finally, Java output is generated by code templates. For every different 
implementation platform only these code templates have to be replaced 

Note that all parts of the PST generation are implemented in the Viatra2 
framework which improves extensibility and portability to other underlying 
implementation platform. In the rest of the paper, we first provide a brief overview 
of the models and transformations used in Viatra2 (in Sec. 3). Then, the main part 
of the paper discusses (in Sec. 4) the meta-transformation developed for the PST 
generation. A comparison with related work is given in Sec. 5, and Sec. 6 
concludes the paper. 



3 Models and Transformations in Viatra2 

3.1 The VPM Metamodeling Language 

Metamodeling is a fundamental part of model transformation design as it allows 
the structural definition (i.e. abstract syntax) of modeling languages. Metamodels 
are represented in metamodeling language, which is another modeling language 
for capturing metamodels. 

The VPM (Visual Precise Metamodeling) [16] which is the metamodel language 
of Viatra2 consists of two basic elements: the entity (a generalization of MOF 
package, class, or object) and the relation (a generalization of MOF association 
end, attribute, link end, slot). Entities represent basic concepts of a (modeling) 
domain, while relations represent the relationships between other model elements. 
Model elements are arranged into a strict containment hierarchy, which constitutes 
the VPM model space. Within a container entity, each model element has a unique 
local name, but each model element also has a globally unique identifier which is 
called a fully qualified name (FQN). 

There are two special relationships between model elements: the supertypeOf 
(inheritance, generalization) relation represents binary superclass-subclass 
relationships (like the UML generalization concept), while the instanceOf relation 
represents type-instance relationships (between meta-levels). By using explicit 
instanceOf relationship, metamodels and models can be stored in the same model 
space in a compact way. A VPM sample metamodel of the representation of GT 
rules is depicted in Fig. 4. 

3.2 Transformation Language 

Transformation descriptions in Viatra2 consist the combination of three 
paradigms: (i) graph patterns, (ii) graph transformation (GT [6]) rules and (iii) 
abstract state machine (ASM [5]). The transformation language implementing all 
these concepts is the Viatra Textual Command Language (VTCL). 

Graph patterns 

Graph patterns (referred as GT patterns) are the atomic units of model 
transformations. They represent conditions (or constraints) that have to be fulfilled 
by a part of the model space in order to execute some manipulation steps on the 
model. A model (i.e. part of the model space) can satisfy a graph pattern, if the 
pattern can be matched to a subgraph of the model (by graph pattern matching). 



An example GT pattern is depicted in Fig. 2. The graph representation of the 
pattern is depicted in Fig. 2(a), while Fig. 2(b) shows the Viatra2 model space 
representation, which is discussed later in Sec. 3.3. 

The GT pattern of Fig. 2(a) is fulfilled if there exists a class CS which has 

an attribute A and a parent class CP. 

         
(a) graph view (b) tree view 

Figure 2 
GTPattern example 

Graph transformation rules 

While graph patterns define logical conditions (formulas) on models, the 
manipulation of models is defined by graph transformation rules, which heavily 
rely on graph patterns for defining the application criteria of transformation steps. 
The application of a GT rule on a given model replaces an image of its left-hand 
side (LHS) pattern with an image of its right-hand side (RHS) pattern (following 
the single pushout approach [7]). 

The sample graph transformation rule in Fig. 3 defines a refactoring step, which 
moves an attribute from the child to the parent class. This means that if the child 
class has an attribute, it will be moved to its parent. 

gtrule liftAttrs(in CS) = 
   { 
    condition pattern cond (CS) = 
       { 

Class(CP); 
Class.attrs(P, CP, CS);  
Class(CS); 
Attribute(A); 
del class.attrs(CA1, CP, A); 
new class.attrs(CA2, CS, A); 

      } 
}  

(a) code view (b) graph view 

Figure 3 
The GT rule liftAttrs 



The rule contains a simple pattern (marked with keyword condition), that jointly 
defines the left hand side (LHS) of the graph transformation rule, and the actions 
to be carried out. Pattern elements marked with keyword new are created after a 
matching for the LHS has been found (and therefore, they do not participate in the 
pattern matching), and elements marked with keyword del are deleted after pattern 
matching. 

Control Structure 

To control the execution order and mode of graph transformation, abstract state 
machines [5] are used. ASMs provide complex model transformations with all the 
necessary control structures including the sequencing operator (seq), ASM rule 
invocation (call), variable declarations and updates (let and update constructs), if-
then-else structures, non-deterministically selected (random) and executed rules 
(choose), iterative execution (applying a rule as long as possible iterate), and the 
deterministic parallel rule application at all possible matchings (locations) 
satisfying a condition (forall). 

3.3 Graph Transformation Metamodel in Viatra2 

An extract of the GT rule metmodel is depicted in Fig. 4. The whole GT rule 
metamodel contains 33 VPM model elements. 

 
Figure 4 

GTRule metamodel 

All GT rules have a compulsory GT pattern call which represents the context (e.g 
type, mode, variables) and optionally an action part which stores the ASM rules 
called by the GT rule. Each GT pattern has a BasicGTPatternBody element, which 
stores the pattern graph PatternGraph and the in/out parameters Pattern Variable. 
Between GT rules, GT pattern calls, and GT patterns information is shared with 
parameter passing using the SymParamList and the Pattern Variable elements. 



Fig. 2(b) shows an instance of the GT metamodel, the entities below the 
PatternGraph are instances of the domain metamodel and they represent the 
concrete pattern graph, while the rest of the representation conforms to the GT 
rule metamodel. 

While being conceptually close to it, the metamodel used for the graph 
transformation rules in Viatra2 framework has a few difference with the public 
standard GT metamodel proposal GTXL (See in [15]): (i) negative conditions can 
be embedded into each other in an arbitrary depth, (ii) supports the use of ASM 
rules in the action part of a GT rule, and (iii) supports the notation of standalone 
GT patterns. 

4 Generation of PST with Meta-transformations 

Due to space restrictions, only two but conceptually critical fragments of the 
automatic PST generation process are discussed. The first example (in Sec. 4.1) 
shows how the type of the elements in a GT pattern graph are determined by a 
combination of GT patterns and ASM rules (using explicit instanceOf relations). 
The second example (in Sec. 4.2) shows how the Java representation of relation 
(association) traversal is generated by a code template. 

The remaining parts of the transformation has similar construct with the two 
examples, namely the necessary information of the model is selected by GT 
patterns, processed or transformed by GT and ASM rules, and the output source 
code is generated by templates. 

4.1 Processing the Graph Transformation Pattern Elements 

This part of the PST generation consists two GT patterns aPatternGraph, 
directType and called from an ASM rule processGTPattern. 

The meta-pattern aPatternGraph 

The pattern aPatternGraph of Fig. 5 denotes that the PG is the pattern graph of the 
graph transformation pattern GTP. According to the metamodel (see Fig. 4) of the 
GT rule, the PatternGraph is connected to the GTPattern through the 
BasicGTPatternBody (BGTPB) entity, along a body and concretePattern relations. 



//PG is the pattern graph of 
GTP(GTPattern) 
pattern aPatternGraph(GTP,PG) = 
{  
’GTPattern’(GTP); 
’GTPattern’.’BasicGTPatternBody’ 
(BGTPB); 
’GTPattern’.’BasicGTPatternBody’ 
.’PatternGraph’(PG); 
’GTPattern’.body(Bo,GTP,BGTPB); 
//relations 
’GTPattern’.’BasicGTPatternBody’ 
.concretePattern(Con,BGTPB,PG) 
}  

(a) code view (b) graph view 

Figure 5 
The aPatternGraph GT Pattern 

The generic pattern directType 

The pattern directType (depicted in Fig. 6) is used to return the direct type of the 
input parameter X. The outer (positive) pattern matches the metamodel entity, 
which represents the type of X by the explicit instanceOf relation. The inner 
(negative) pattern can be satisfied if the input entity T has a subType, which is 
connected to X by an instanceOf relation. In this case the execution of the whole 
rule is violated. 

Generic patterns in Viatra2 use explicit instanceOf relations, which denote type 
variables (such as T). These type variables are instantiated as concrete 
entities/relations from the metamodel (similarly to ordinary pattern variables). 
pattern directType(X, T) = 
{//X is an entity of Type T 

entity(X); 
entity(T); 
instanceOf(X,T); 
//T is not a type of X’s 
//supertypes 
neg pattern hasSubType(T,X) = 
{ 
   entity(T); 
   entity(SubT); 
   supertypeOf(T, SubT); 
   instanceOf(X,SubT); 
} 

}  

(a) code view (b) graph view 

Figure 6 
The directType GT Pattern 

The ASM rule processGTPattern 

The ASM rule processGTPatterns determines the direct type of the elements in 
the graph pattern PG. Type entities must be under the input parameter Metamodel, 
while PG is the pattern graph of the input parameter GT pattern InGTPattern. The 
steps of the rule are the following: 



(i) The choose selects the pattern graph of the GT pattern InGTPattern with the 
GT pattern aPatternGraph and puts it into the variable PG. (ii) The forall iterates 
over all the combination of the elements given in the scope one by one and tries to 
match the directType GT pattern. If a part of the model satisfies the pattern then its 
values are stored in variables X and T. (iii) The ASM rule processEntityBuildSG is 
called with parameters PG, X and T in order to add this new element to search 
graph of the GT pattern PG. 

The VTCL source code of the rule is as follows: 
//GTPatternHolder holds the pattern, and MetaModel is the 
//metamodel of the 
/entities used in the GTPattern(s) 
rule processGTPattern(in InGTPattern, in MetaModel) = seq 
{ 
//selects the GTPatternGraph below the input GTPattern 
choose PG with find aPatternGraph(InGTPattern,PG) do 
//selects the the type(T) in the Metamodel of the entity X 

forall T below MetaModel, X in PG with  
find directType(X, T) do 
 
//processes the entity further and adds to the search graph 

call processEntityBuildSG(PG,X,T); 
} 

4.2 Output Generation 

While Sec. 4.1 demonstrated the meta-transformation based model processing, this 
section focuses on the code template based output generation. The pattern concept 
is similar to the one introduced in the Apache Velocity [1] language, but uses the 
formal ASM and GT paradigms as its control language whose constructs can be 
referred to using the #() notation. 

The template rule printTraversalArb generates the Java equivalent of a simple 
traversal of a relation with arbitrary multiplicity. In case of arbitrary multiplicity 
in the traversed direction (one-to-many or many-to-many), an iterator is 
generated to investigate all possible continuations. 

The input of the template is the source (Source) and target (Target) entities of the 
relation, the type (Type) of the target element, the name of the relation (Relation) 
and the next (Next) element in the traversal order. The ASM function name returns 
the name of the model element. The steps of the traversal order are processed 
recursively by calling the ASM rule processNextStep in order to generate the Java 
equivalents of internal code blocks. 
//code generation the traversal of a relation with arbitrary 
multiplicity 
template printTraversalArb(in Target, in Source, in Relation,in 
Type, in Next)= { 
Iterator iter_#(name(Target))= 
#(name(Source)).get#(name(Relation))().iterator(); 

while(iter_#(name(Target)).hasNext()){ 
try{ 

I#(name(Type)) #(name(Target)) = 



(I#(name(Type))) iter_#(name(Target)).next(); 
 

//call recursively the next step in the order of 
//traversal 
#(call processNextStep(Next);) 

} catch (ClassCastException e) {} } 
} 

To demonstrate how easily the plugin generator can be extended to generate other 
OO language specific transformers, the following example shows the C# code 
template for the arbitrary multiplicity relation traversal: 
template printTraversalArb(in Target, in Source, in Relation,in 
Type, in Next) = { 
ICollection coll__#(name(Target))= 
#(name(Source)).get#(name(Relation))(); 
 
foreach( DictionaryEntry item_#(name(Target)) in coll ) 

{try 
{I#(name(Type)) #(name(Target)) = 

(I#(name(Type))) item_#(name(Target)).Value; 
#(call processNextStep(Next);) 

} catch(Exception e) {} } 
} 

The Java and C# source code of the GT pattern printTraversalArb are partially 
generated by these code templates and they are presented in App. A and App. B, 
respectively. 

5 Related Work 

While there is already a large set of model transformation tools available using 
graph transformation languages, here we give a brief overview on tools providing 
both an interpreter and a compiled transformer. 

Fujaba [12] compiles visual specifications of transformations [8] into executable 
Java code. Our approach also shows similarity with the new templatebased code 
generation plugin [11] of Fujaba. The main difference is that in our approach, 
code templates are a part of the transformation language allowing to design and 
manage the whole plugin generation within the Viatra2 framework. 

The pattern matching engine of compiled GReAT [19] generates optimised 
executable C++ code. In GReAT, GT rules also have a corresponding metamodel, 
but since the tool builds upon the OMG’s MOF metamodeling approach, generic 
and meta-transformations are not yet supported, and the transformation themselves 
are not part of the model space. As for the output generation step, the GReAT 
source code generator is implemented in native C++, which directly accesses the 
model manipulation and traversal API. 

MOLA [10] is a graphical procedural transformation language also with a clear 
separation of transformation design and execution time. Its main distinguishing 



features are advanced graphical pattern definitions and control structures defined 
using an off-the-shelf UML tool. 

PROGRES [14] supports both interpreted and compiled execution (generating C 
code) of programmed graph transformation systems. Only PROGRES allows the 
use of type parameters in rules to support higher-order transformations, but meta-
transformations are not yet supported, and the model of the transformations are 
not part of the model space. 

Finally, the concepts of meta-transformations defined by graph transformation 
rules was first discussed in [9]. 

Conclusion 

In the current paper, we proposed to use generic and meta-transformations for 
generating platform-specific transformer plugins from transformation 
specifications given by the combination of graph transformation rules and abstract 
state machines in the Viatra2 framework. 

The main advantage of our approach is reusability: only final code generation 
templates need to be altered when porting plugins to other object-oriented 
languages. Up to now, we have a complete implementation for Java (and the 
related EJB3 platform in [2]), but a C# solution is an ongoing project. 

The entire code generator for Java transformer plugins consists of about 150 
(ASM and GT) transformation rules, and it has been implemented within the 
(interpreted) Viatra2 framework. Experimental comparison of the generated 
transformer plugins (for both Java and EJB-based solutions) based on benchmark 
measurements are discussed in [2]. 

A next challenge for the future is to integrate transformer plugins to the Viatra2 
framework itself. After successful integration, an optimized compiled version of 
native Java transformations can be executed instead of the interpreted version. 
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A Generated Java Source Code 
public static HashMap liftAttrs(Object CSFIX) throws 
RuleFailedException { 
HashMap result = new HashMap(); 
boolean success = false; 
try{ //FIX incoming variables 

iClass CS = (iClass) CSFIX; 
//many-to-one relation 
try{ 

IClass CP = (IClass) CS.getParent(); 
//one-to-many relation 
Iterator iter_A = CS.getAttrs().iterator(); 
while(iter_A.hasNext()){ 
try{ 

IAttribute A = (IAttribute) iter_A.next(); 
//**ACTION part of the Rule 
CS.deleteAttrs(A); 
CP.addAttrs(A); 
success = true; 

} catch (ClassCastException e) {} } 
} catch (ClassCastException e) {} 

} catch (ClassCastException e) {} 
if(success) 

return result; //there are no output parameter 
else 

throw new RuleFailedException();} 

B Generated C# Source Code 
public Hashtable liftAttrs(Object CSFIX) 
{ Hashtable result = new Hashtable(); 
bool success = false; 
try { //FIX incoming variables 

IClass CS = (IClass) CSFIX; 
//many-to-one relation 
try 

{ IClass CP = (IClass) CS.getParent(); 



//one-to-many relation 
ICollection coll = CS.getAttrs(); 
foreach( DictionaryEntry item_A in coll ) 
{ try 

{IAttribute A = (IAttribute) item_A.Value(); 
//**ACTION part of the Rule 
CS.deleteAttrs(A); 
CP.addAttrs(A); 
success = true; 

} catch(Exception e) {} } 
} catch (Exception e) {} 

} catch (Exception e) {} 
if(success) 

return result; 
else 

throw new RuleFailedException();} 


