
Model Transformer Plugin Generation

Ákos Horváth
Department of Measurement and Information Systems
Budapest University of Technology and Economics
Magyar tudósok krt 2, H-1521 Budapest, Hungary
ha442@hszk.bme.hu

Endre Borbély
Institute of Communication Engineering
Kandó Kálmán Faculty of Electrical Engineering
Budapest Tech
Tavaszmező utca 17, H-1084 Budapest, Hungary
borbely.endre@kvk.bmf.hu

Abstract: The current paper presents a new approach using generic and meta-
transformations for generating platform-specific transformer plugins from model
transformation specifications defined by a combination of graph transformation and
abstract state machine rules (as used within the Viatra2 framework). The essence of the
approach is to store transformation rules as ordinary models in the model space which can
be processed later by the meta-transformations which generates the platform-specific
(Java,C++, C#, etc.) transformer plugin. These meta rules highly rely on generic patterns
(i.e. patterns with type parameters) which provide high-level reuse of basic transformation
elements. As a result, the porting of a transformer plugin to a new underlying platform can
be accelerated significantly.

Keywords: meta-transformation, platform-specific transformer, generic transformation,
code generation

1 Introduction

Nowadays, the immense role of model transformation (MT) concepts and tools is
unquestionable for the success of the model-driven system development (MDSD
[3]) in order to capture the integration and evolution of models. In MDSD, models
are frequently captured by a graph structure, and the transformations are specified
as graph transformations. Informally, a graph transformation (GT [13,6]) rule

performs local manipulation on graph models by finding a matching of the pattern
prescribed by its left-hand side (LHS) graph in the model, and changing it
according to the right-hand side (RHS) graph.

Advanced model transformation tools usually separate the design (validation,
maintenance) of a transformation from its execution by providing both tool
dependent interpreter and standalone compiled plugins. Interpreters (also called as
platform-independent transformers (PIT) in [4, 17]) ease the development (and
testing, debugging and validation) of model transformations within a single
transformation framework without relying on a highly optimised target
transformation technology. Platform (language) specific transformers (PST) are
compiled standalone versions of a model transformation in an underlying platform
(e.g. Java) which is optimized for efficient performance. This transformer plugin
is generated in a complex model transformation and/or code generation step.

However, the implementation of these generators for platform-specific trans-
formers are typically use standard programming languages. As a consequence, it is
difficult to port existing plugin generators to different platforms with conceptual
similarities (e.g. from Java to C#).

The current paper presents a new approach using generic and meta-
transformations for generating platform-specific transformer plugins from model
transformation specifications defined by a combination of graph transformation
and abstract state machine rules (as used within the Viatra2 framework). Our code
generator for Java transformer plugins highly builds on the fact that
transformation rules are stored as ordinary models which can be processed later by
the meta-transformation which generates the Java transformer plugin. These meta
rules highly rely on generic patterns (i.e. patterns with type parameters) which
provide high-level reuse of basic transformation elements. As a result, the porting
of a transformer plugin to a new underlying platform can be accelerated
significantly.

2 Overview of the Approach

The proposed workflow of the meta-transformation for PST generation is
summarized in Fig. 1.

In Viatra2, transformations can be defined by the combination of graph
transformation (GT [6]) and abstract state machines (ASM [5]). The Xform
metamodel (to be discussed in details in Sec. 3.2) symbolizes the transformation
metamodel, which consists of an ASM part for control structures and a graph
transformation part for model manipulation.

Figure 1

Overview of the meta-transformation based generation

The steps of the plugin generator transformation are the following:

• As ASM and GT rules are processed differently, we separate them in the
first step.

• ASM rules are processed as an ordinary programming language

• GT rules are processed in two substeps. The LHS of the rule should be
handled as a GT pattern, while the action part described by the difference
of RHS and LHS (and potencially additional ASM rules).

• For each pattern call initiating a graph pattern matching process, different
search graphs are generated. (See [18] for a detailed discussion of search
graph generation)

• An optimized search plan (i.e. traversal order of the pattern nodes) is
generated for every search graph in order to sequence the matching of the
GT pattern.

• Finally, Java output is generated by code templates. For every different
implementation platform only these code templates have to be replaced

Note that all parts of the PST generation are implemented in the Viatra2
framework which improves extensibility and portability to other underlying
implementation platform. In the rest of the paper, we first provide a brief overview
of the models and transformations used in Viatra2 (in Sec. 3). Then, the main part
of the paper discusses (in Sec. 4) the meta-transformation developed for the PST
generation. A comparison with related work is given in Sec. 5, and Sec. 6
concludes the paper.

3 Models and Transformations in Viatra2

3.1 The VPM Metamodeling Language

Metamodeling is a fundamental part of model transformation design as it allows
the structural definition (i.e. abstract syntax) of modeling languages. Metamodels
are represented in metamodeling language, which is another modeling language
for capturing metamodels.

The VPM (Visual Precise Metamodeling) [16] which is the metamodel language
of Viatra2 consists of two basic elements: the entity (a generalization of MOF
package, class, or object) and the relation (a generalization of MOF association
end, attribute, link end, slot). Entities represent basic concepts of a (modeling)
domain, while relations represent the relationships between other model elements.
Model elements are arranged into a strict containment hierarchy, which constitutes
the VPM model space. Within a container entity, each model element has a unique
local name, but each model element also has a globally unique identifier which is
called a fully qualified name (FQN).

There are two special relationships between model elements: the supertypeOf
(inheritance, generalization) relation represents binary superclass-subclass
relationships (like the UML generalization concept), while the instanceOf relation
represents type-instance relationships (between meta-levels). By using explicit
instanceOf relationship, metamodels and models can be stored in the same model
space in a compact way. A VPM sample metamodel of the representation of GT
rules is depicted in Fig. 4.

3.2 Transformation Language

Transformation descriptions in Viatra2 consist the combination of three
paradigms: (i) graph patterns, (ii) graph transformation (GT [6]) rules and (iii)
abstract state machine (ASM [5]). The transformation language implementing all
these concepts is the Viatra Textual Command Language (VTCL).

Graph patterns

Graph patterns (referred as GT patterns) are the atomic units of model
transformations. They represent conditions (or constraints) that have to be fulfilled
by a part of the model space in order to execute some manipulation steps on the
model. A model (i.e. part of the model space) can satisfy a graph pattern, if the
pattern can be matched to a subgraph of the model (by graph pattern matching).

An example GT pattern is depicted in Fig. 2. The graph representation of the
pattern is depicted in Fig. 2(a), while Fig. 2(b) shows the Viatra2 model space
representation, which is discussed later in Sec. 3.3.

The GT pattern of Fig. 2(a) is fulfilled if there exists a class CS which has

an attribute A and a parent class CP.

(a) graph view (b) tree view

Figure 2
GTPattern example

Graph transformation rules

While graph patterns define logical conditions (formulas) on models, the
manipulation of models is defined by graph transformation rules, which heavily
rely on graph patterns for defining the application criteria of transformation steps.
The application of a GT rule on a given model replaces an image of its left-hand
side (LHS) pattern with an image of its right-hand side (RHS) pattern (following
the single pushout approach [7]).

The sample graph transformation rule in Fig. 3 defines a refactoring step, which
moves an attribute from the child to the parent class. This means that if the child
class has an attribute, it will be moved to its parent.

gtrule liftAttrs(in CS) =
 {
 condition pattern cond (CS) =
 {

Class(CP);
Class.attrs(P, CP, CS);
Class(CS);
Attribute(A);
del class.attrs(CA1, CP, A);
new class.attrs(CA2, CS, A);

 }
}

(a) code view (b) graph view

Figure 3
The GT rule liftAttrs

The rule contains a simple pattern (marked with keyword condition), that jointly
defines the left hand side (LHS) of the graph transformation rule, and the actions
to be carried out. Pattern elements marked with keyword new are created after a
matching for the LHS has been found (and therefore, they do not participate in the
pattern matching), and elements marked with keyword del are deleted after pattern
matching.

Control Structure

To control the execution order and mode of graph transformation, abstract state
machines [5] are used. ASMs provide complex model transformations with all the
necessary control structures including the sequencing operator (seq), ASM rule
invocation (call), variable declarations and updates (let and update constructs), if-
then-else structures, non-deterministically selected (random) and executed rules
(choose), iterative execution (applying a rule as long as possible iterate), and the
deterministic parallel rule application at all possible matchings (locations)
satisfying a condition (forall).

3.3 Graph Transformation Metamodel in Viatra2

An extract of the GT rule metmodel is depicted in Fig. 4. The whole GT rule
metamodel contains 33 VPM model elements.

Figure 4

GTRule metamodel

All GT rules have a compulsory GT pattern call which represents the context (e.g
type, mode, variables) and optionally an action part which stores the ASM rules
called by the GT rule. Each GT pattern has a BasicGTPatternBody element, which
stores the pattern graph PatternGraph and the in/out parameters Pattern Variable.
Between GT rules, GT pattern calls, and GT patterns information is shared with
parameter passing using the SymParamList and the Pattern Variable elements.

Fig. 2(b) shows an instance of the GT metamodel, the entities below the
PatternGraph are instances of the domain metamodel and they represent the
concrete pattern graph, while the rest of the representation conforms to the GT
rule metamodel.

While being conceptually close to it, the metamodel used for the graph
transformation rules in Viatra2 framework has a few difference with the public
standard GT metamodel proposal GTXL (See in [15]): (i) negative conditions can
be embedded into each other in an arbitrary depth, (ii) supports the use of ASM
rules in the action part of a GT rule, and (iii) supports the notation of standalone
GT patterns.

4 Generation of PST with Meta-transformations

Due to space restrictions, only two but conceptually critical fragments of the
automatic PST generation process are discussed. The first example (in Sec. 4.1)
shows how the type of the elements in a GT pattern graph are determined by a
combination of GT patterns and ASM rules (using explicit instanceOf relations).
The second example (in Sec. 4.2) shows how the Java representation of relation
(association) traversal is generated by a code template.

The remaining parts of the transformation has similar construct with the two
examples, namely the necessary information of the model is selected by GT
patterns, processed or transformed by GT and ASM rules, and the output source
code is generated by templates.

4.1 Processing the Graph Transformation Pattern Elements

This part of the PST generation consists two GT patterns aPatternGraph,
directType and called from an ASM rule processGTPattern.

The meta-pattern aPatternGraph

The pattern aPatternGraph of Fig. 5 denotes that the PG is the pattern graph of the
graph transformation pattern GTP. According to the metamodel (see Fig. 4) of the
GT rule, the PatternGraph is connected to the GTPattern through the
BasicGTPatternBody (BGTPB) entity, along a body and concretePattern relations.

//PG is the pattern graph of
GTP(GTPattern)
pattern aPatternGraph(GTP,PG) =
{
’GTPattern’(GTP);
’GTPattern’.’BasicGTPatternBody’
(BGTPB);
’GTPattern’.’BasicGTPatternBody’
.’PatternGraph’(PG);
’GTPattern’.body(Bo,GTP,BGTPB);
//relations
’GTPattern’.’BasicGTPatternBody’
.concretePattern(Con,BGTPB,PG)
}

(a) code view (b) graph view

Figure 5
The aPatternGraph GT Pattern

The generic pattern directType

The pattern directType (depicted in Fig. 6) is used to return the direct type of the
input parameter X. The outer (positive) pattern matches the metamodel entity,
which represents the type of X by the explicit instanceOf relation. The inner
(negative) pattern can be satisfied if the input entity T has a subType, which is
connected to X by an instanceOf relation. In this case the execution of the whole
rule is violated.

Generic patterns in Viatra2 use explicit instanceOf relations, which denote type
variables (such as T). These type variables are instantiated as concrete
entities/relations from the metamodel (similarly to ordinary pattern variables).
pattern directType(X, T) =
{//X is an entity of Type T

entity(X);
entity(T);
instanceOf(X,T);
//T is not a type of X’s
//supertypes
neg pattern hasSubType(T,X) =
{
 entity(T);
 entity(SubT);
 supertypeOf(T, SubT);
 instanceOf(X,SubT);
}

}

(a) code view (b) graph view

Figure 6
The directType GT Pattern

The ASM rule processGTPattern

The ASM rule processGTPatterns determines the direct type of the elements in
the graph pattern PG. Type entities must be under the input parameter Metamodel,
while PG is the pattern graph of the input parameter GT pattern InGTPattern. The
steps of the rule are the following:

(i) The choose selects the pattern graph of the GT pattern InGTPattern with the
GT pattern aPatternGraph and puts it into the variable PG. (ii) The forall iterates
over all the combination of the elements given in the scope one by one and tries to
match the directType GT pattern. If a part of the model satisfies the pattern then its
values are stored in variables X and T. (iii) The ASM rule processEntityBuildSG is
called with parameters PG, X and T in order to add this new element to search
graph of the GT pattern PG.

The VTCL source code of the rule is as follows:
//GTPatternHolder holds the pattern, and MetaModel is the
//metamodel of the
/entities used in the GTPattern(s)
rule processGTPattern(in InGTPattern, in MetaModel) = seq
{
//selects the GTPatternGraph below the input GTPattern
choose PG with find aPatternGraph(InGTPattern,PG) do
//selects the the type(T) in the Metamodel of the entity X

forall T below MetaModel, X in PG with
find directType(X, T) do

//processes the entity further and adds to the search graph

call processEntityBuildSG(PG,X,T);
}

4.2 Output Generation

While Sec. 4.1 demonstrated the meta-transformation based model processing, this
section focuses on the code template based output generation. The pattern concept
is similar to the one introduced in the Apache Velocity [1] language, but uses the
formal ASM and GT paradigms as its control language whose constructs can be
referred to using the #() notation.

The template rule printTraversalArb generates the Java equivalent of a simple
traversal of a relation with arbitrary multiplicity. In case of arbitrary multiplicity
in the traversed direction (one-to-many or many-to-many), an iterator is
generated to investigate all possible continuations.

The input of the template is the source (Source) and target (Target) entities of the
relation, the type (Type) of the target element, the name of the relation (Relation)
and the next (Next) element in the traversal order. The ASM function name returns
the name of the model element. The steps of the traversal order are processed
recursively by calling the ASM rule processNextStep in order to generate the Java
equivalents of internal code blocks.
//code generation the traversal of a relation with arbitrary
multiplicity
template printTraversalArb(in Target, in Source, in Relation,in
Type, in Next)= {
Iterator iter_#(name(Target))=
#(name(Source)).get#(name(Relation))().iterator();

while(iter_#(name(Target)).hasNext()){
try{

I#(name(Type)) #(name(Target)) =

(I#(name(Type))) iter_#(name(Target)).next();

//call recursively the next step in the order of
//traversal
#(call processNextStep(Next);)

} catch (ClassCastException e) {} }
}

To demonstrate how easily the plugin generator can be extended to generate other
OO language specific transformers, the following example shows the C# code
template for the arbitrary multiplicity relation traversal:
template printTraversalArb(in Target, in Source, in Relation,in
Type, in Next) = {
ICollection coll__#(name(Target))=
#(name(Source)).get#(name(Relation))();

foreach(DictionaryEntry item_#(name(Target)) in coll)

{try
{I#(name(Type)) #(name(Target)) =

(I#(name(Type))) item_#(name(Target)).Value;
#(call processNextStep(Next);)

} catch(Exception e) {} }
}

The Java and C# source code of the GT pattern printTraversalArb are partially
generated by these code templates and they are presented in App. A and App. B,
respectively.

5 Related Work

While there is already a large set of model transformation tools available using
graph transformation languages, here we give a brief overview on tools providing
both an interpreter and a compiled transformer.

Fujaba [12] compiles visual specifications of transformations [8] into executable
Java code. Our approach also shows similarity with the new templatebased code
generation plugin [11] of Fujaba. The main difference is that in our approach,
code templates are a part of the transformation language allowing to design and
manage the whole plugin generation within the Viatra2 framework.

The pattern matching engine of compiled GReAT [19] generates optimised
executable C++ code. In GReAT, GT rules also have a corresponding metamodel,
but since the tool builds upon the OMG’s MOF metamodeling approach, generic
and meta-transformations are not yet supported, and the transformation themselves
are not part of the model space. As for the output generation step, the GReAT
source code generator is implemented in native C++, which directly accesses the
model manipulation and traversal API.

MOLA [10] is a graphical procedural transformation language also with a clear
separation of transformation design and execution time. Its main distinguishing

features are advanced graphical pattern definitions and control structures defined
using an off-the-shelf UML tool.

PROGRES [14] supports both interpreted and compiled execution (generating C
code) of programmed graph transformation systems. Only PROGRES allows the
use of type parameters in rules to support higher-order transformations, but meta-
transformations are not yet supported, and the model of the transformations are
not part of the model space.

Finally, the concepts of meta-transformations defined by graph transformation
rules was first discussed in [9].

Conclusion

In the current paper, we proposed to use generic and meta-transformations for
generating platform-specific transformer plugins from transformation
specifications given by the combination of graph transformation rules and abstract
state machines in the Viatra2 framework.

The main advantage of our approach is reusability: only final code generation
templates need to be altered when porting plugins to other object-oriented
languages. Up to now, we have a complete implementation for Java (and the
related EJB3 platform in [2]), but a C# solution is an ongoing project.

The entire code generator for Java transformer plugins consists of about 150
(ASM and GT) transformation rules, and it has been implemented within the
(interpreted) Viatra2 framework. Experimental comparison of the generated
transformer plugins (for both Java and EJB-based solutions) based on benchmark
measurements are discussed in [2].

A next challenge for the future is to integrate transformer plugins to the Viatra2
framework itself. After successful integration, an optimized compiled version of
native Java transformations can be executed instead of the interpreted version.

References

[1] Apache, Velocity homepage, http://jakarta.apache.org/velocity/

[2] Balogh, A., G. Varró, D. Varró and A. Pataricza, Generation of platform-
specific model transformation plugins for EJB 3.0, accepted to SAC 2006,
Model Transformation Track

[3] Bettin, J., Ensuring structural constraints in graph-based models with type
inheritance, in: M. Cerioli, editor, Proc. 8th Int. Conf on Fundamental
Approaches to Software Engineering (FASE 2005), LNCS 3442 (2005),
pp. 64-79

[4] B´ezivin, J., N. Farcet, J.-M. Jézéquel, B. Langlois and D. Pollet,
Reflective model driven engineering, in: P. Stevens, J. Whittle and G.
Booch, editors, Proc. UML 2003: 6th International Conference on the
Unified Modeling Language, LNCS 2863 (2003), pp. 175-189

[5] Börger, E. and R. Stark, “Abstract State Machines. A method for High-
Level System Design and Analysis,” Springer-Verlag, 2003

[6] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, 2:
Applications, Languages and Tools in: “Handbook of Graph Grammars and
Computing by Graph Transformations”, World Scientific, 1999

[7] Ehrig, H., R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner and A.
Corradini, Algebraic Approaches to Graph Transformation — Part II:
Single pushout approach and comparison with double pushout approach
“In [13],” World Scientific, 1997 pp. 247-312

[8] Fischer, T., J. Niere, L. Torunski and A. Z¨undorf, Story diagrams: A new
graph transformation language based on UML and Java, in: H. Ehrig, G.
Engels, H.-J. Kreowski and G. Rozenberg, editors, Proc. Theory and
Application to Graph Transformations (TAGT’98), LNCS 1764 (2000)

[9] Hesse,W., Two-level graph grammars, in: V. Claus, H. Ehrig and G.
Rozenberg, editors, International Workshop on Graph-Grammars and Their
Application to Computer Science and Biology, October 30 - November 3,
1978, Lecture Notes in Computer Science 73 (1979), pp. 255-269

[10] Kalnins, A., J. Barzdins and E. Celms, Model transformation language
MOLA, in: Proceedings of MDAFA 2004 (Model-Driven Architecture:
Foundations and Applications 2004), Linköping, Sweden, 2004, pp. 14-28

[11] L. Geiger, C. R. and C. Schneider, Template- and model based code
generation for MDA-tools, in: Proc. of 3rd International Fujaba Days
(IFD05), Carsten Reckord Heinz Nixdorf Institute, Paderborn, Germany,
2005

[12] Nickel, U., J. Niere and A. Z¨undorf, Tool demonstration: The FUJABA
environment, in: The 22nd International Conference on Software
Engineering (ICSE) (2000)

[13] Rozenberg, G., editor, Handbook of Graph Grammars and Computing by
Graph Transformations: Foundations, World Scientific, 1997

[14] Schürr, A., Introduction to PROGRES, an attributed graph grammar based
specification language, in: M. Nagl, editor, Graph–Theoretic Concepts in
Computer Science, LNCS 411 (1990), pp. 151-165

[15] Taentzer, G., Towards common exchange formats for graphs and graph
transformation systems, in: J. Padberg, editor, UNIGRA 2001: Uniform
Approaches to Graphical Process Specification Techniques, ENTCS 44 (4),
2001

[16] Varró, D. and A. Pataricza, VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains and UML,
Journal of Software and Systems Modeling 2 (2003), pp. 187-210

[17] Varró, D. and A. Pataricza, Generic and meta-transformations for model
transformation engineering, in: T. Baar, A. Strohmeier, A. Moreira and S.
Mellor, editors, Proc. UML 2004: 7th International Conference on the
Unified Modeling Language, LNCS 3273 (2004), pp. 290-304

[18] Varró, G., D. Varró and K. Friedl, Adaptive graph pattern matching for
model transformations using model-sensitive search plans, in: G. Karsai
and G. Taentzer, editors, GraMot 2005, International Workshop on Graph
and Model Transformations, ENTCS, in press

[19] Vizhanyo, A., A. Agrawal and F. Shi, Towards generation of efficient
transformations, in: G. Karsai and E. Visser, editors, Proc. of 3rd Int. Conf.
on Generative Programming and Component Engineering (GPCE 2004),
LNCS 3286 (2004), pp. 298-316

A Generated Java Source Code
public static HashMap liftAttrs(Object CSFIX) throws
RuleFailedException {
HashMap result = new HashMap();
boolean success = false;
try{ //FIX incoming variables

iClass CS = (iClass) CSFIX;
//many-to-one relation
try{

IClass CP = (IClass) CS.getParent();
//one-to-many relation
Iterator iter_A = CS.getAttrs().iterator();
while(iter_A.hasNext()){
try{

IAttribute A = (IAttribute) iter_A.next();
//**ACTION part of the Rule
CS.deleteAttrs(A);
CP.addAttrs(A);
success = true;

} catch (ClassCastException e) {} }
} catch (ClassCastException e) {}

} catch (ClassCastException e) {}
if(success)

return result; //there are no output parameter
else

throw new RuleFailedException();}

B Generated C# Source Code
public Hashtable liftAttrs(Object CSFIX)
{ Hashtable result = new Hashtable();
bool success = false;
try { //FIX incoming variables

IClass CS = (IClass) CSFIX;
//many-to-one relation
try

{ IClass CP = (IClass) CS.getParent();

//one-to-many relation
ICollection coll = CS.getAttrs();
foreach(DictionaryEntry item_A in coll)
{ try

{IAttribute A = (IAttribute) item_A.Value();
//**ACTION part of the Rule
CS.deleteAttrs(A);
CP.addAttrs(A);
success = true;

} catch(Exception e) {} }
} catch (Exception e) {}

} catch (Exception e) {}
if(success)

return result;
else

throw new RuleFailedException();}

