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Abstract: In the most control problems, the task of the regulator is to keep some variables 
at constant values. The reference values are easily determined. A number of processes 
should have as high efficiency as possible and their performance can be improved by 
adjusting some plant variables as to maximize or to minimize the performance criterion. 
Such kind of control is called extremum control. The major chacateristic of these systems is 
a static response curve, relating the output to input with nonlinear character and with an 
extremum. The objective of the extremum control system is to keep the process on the 
extremum point, despite changes in the process or influence of disturbances. In order to 
achieve this aim, the slope seeking (identification) is a major job of the control engineer. 
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1 Introduction 

Extremum control system applications are specific to plants with a nonlinear static 
response curve (“static characteristic”) ϕ=f(μ) with extremum (maximum or 
minimum). It is obvious, it is an ambiguous function: the same output value ϕ=ϕ* 
may be obtained with two (or more) input values: (μ1, μ2). The control signal has 
different direction (different derivative) if μ=μ1 or μ=μ2. The main problem which 
must be solved is to “reject” the ambiguity in order to build a correct control 
signal. 

The desired set point is unknown a priory and/or varies with different conditions 
in a complex way. It is necessary to define an objective function of the system and 
than to maximize or minimize this function, as effect of a proper control signal. 

For the most frequent cases, the extremum control system is not the “main aim” of 
the control application. A different output variable must be stabilized – or has to 
truck a specific reference – and the extremum control system is attached to the 



main control system in order to maximize or to minimize the objective function: 
fuel consumption, electrical energy, etc. 

A lot of effort was put into the research concerning extremum controllers in the 
1950-1960[1,5 7], but due to the lack of the useful results in analysis (stability, 
behavior, etc.), the number of application decreased. A series of papers in the 
period 1990-2000[7] – and specially papers of Krstic [2,3,4,6] – treated problems 
concerning the stability criteria for a given perturbation scheme. The cheaper and 
more powerful computing power extended the area of actual application [5,7]. 

2 Slope Identification in Extremum Control 

The nonlinear input-output steady-state dependence with extremum may be 
modeled by the second degree equation [1,2,7]]: 

( )2** E μμϕϕ −+=  (1) 

Starting the loop operation from the initial condition (μi), the manipulated variable 
of the extremum control system (μm) has to act till: 

*
mst μμμ ==  

and the objective function (ϕ) reached the minimum. 

The main idea of the slope identification (or, equivalently, to reject the ambiguity) 
is to apply the “gradient methods”. There are other methods too, but the “gradient 
methods” are the most frequent, like [1,2,7]]: switching systems, self-driving 
system and perturbation method. 

The authors develop the last method, but the perturbation signal will be called 
“test signal” and is related to the series of papers of Krstic and co-workers 
[2,3.4]]. The principle of the extremum control system operation with sinusoidal 
test signal Asin(ω0t) and Hi(s)=1 is presented in Figure 1. 

The frequency (ω0) is “sufficiently large” [2,6] and not equal to any frequency in 
noise and not equal to any imaginary axis zeros of Hi(s). 

In accord to [2], the high-pass filter c*
o(s) transfers only the AC- component from 

z(t): 

( )dtsinEA o −⋅⋅⋅ ωε μ  (2) 

where (εμ) is the “error” ( )*μμε μ −≅ , i.e. the deviation from the point of 
extremum. 
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Figure 1 

Extremum seeking algorithm with sinusoidal test signal 

In order to determine the value of (εμ), a demodulation by multiplication was used 
[2]: 
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rejects the AC component with the frequency (2ωot). The output signal (μm) acts 
as the manipulated variable and moves the operating point toward the extremum. 

The stability conditions for SISO systems given in [2,3] are usually fulfilled 
[1,5,7] hence the extremum points can be reached. 

The “original” scheme given by Krstic [2.3.4] is based on some particularities: 

a – the AC component, equation (2), is selected by a wash-out (“derivative” or 
“high-pass”) filter: 

hs
s)s(C*
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≈  (4) 

b – the deviation (εμ) is obtained using a “demodulation by multiplication”, 
equation (3). 

It is well-known that the high-pass filter emphasizes the noise, which is always 
present in industrial application. A low-pass filter before the wash-out filter (4) 
will alleviate the useful signal. In order to avoid this conflict, the authors propose 
a structure without derivative element, based on the equation: 
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by which a low-pass filter with small time-constant (τ<<T) is now useful: 
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On the other hand, the “direct demodulation” using switches seems to be a cheaper 
and simple solution, compared with the solution given in [2,3,6]. Actual analog or 
hybrid electronic circuits allow an effective solution in order to obtain the variable 
(εμ), figure 2, with β≈d. 
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Figure 2 

Direct demodulation using switch 

If εμ(t)>0 that is, the operating point is, for instance, in the right-side of the 
extremum (and the slope dϕ/dμ has a certain sign), the (∫εμ) must 
decrease in order to reach the extremum, being negative. 

For εμ(t)<0 the extremum will be reached if (∫εμ)>0 and the slope(dϕ/dμ) has 
an opposite sign. 

3 The Problem of Phase Displacements (d) and (β) 

An input sinusoidal signal Asin(ω0t) gives an ouput signal with a phase angle 
displacement: 

)j(Hd 0o ω∠=  (7) 

usually, negative. If the transfer function Ho(s) is exactly known and Co(s) is 
imposed, the phase-angle (d) may be known with a high degree of accuracy. The 
same phase-angle (β) has to control the “demodulator”, equal in version with 
multiplication or in version with direct demodulation: (β≈d). If the parameter or 
structure of Ho(s) changes, an adaptive extremum control system must be used. 
The exact value of (d) is very important: an error ππββ ±=±= d*  is fatal 
because the “negative” feedback on the path of the manipulated variable (μm(t)) 
will change in “positive” feedback, and the operating point will move off the 
extremum (a typical case of instability). 



4 Proof by Simulation of the Proposed Solution 
Advantages 

Using SIMULINK, the authors simulate the extremum control systems in two 
versions: the original scheme given in [2, 4] with derivative filter and multiplier 
and the modified version without derivative element and with direct demodulator, 
using switches. 

The common elements are: 

The transfer function Ho(s): ( )( )1s61s4
2)s(H o ++

=  

The nonlinear (extremum) input output dependences: 

( ) ( )21 35.2 −+= μμϕ  (8) 

( ) ( )22 5.23 −+= μμϕ  (9) 

in order to observe the effects of the variations in main parameters (μ*) and (ϕ*). 

The test signal: 

( ) ( )t5.0sin2.0tsinA 0 ⋅=⋅ ω  (10) 

A noise signal added to the output: 

)t(n)t(zz +=Σ  (11) 

where n(t) is a white noise signal, with the power spectral density of 0.1W/Hz. 

The simulation strategy is as follows. 

- The extremum control system is separated from the main control system. 

- An initial value (μi) is given: this determines the initial position of the 
operating point relative to the extremum. Initially, the slope identification 
“mechanism” is blocked (A=0). 

- At the moment t1=50, the slope identification process is started and the 
manipulated variable (μm) “closes” the operating point to the extremum. The 
nonlinearity with extremum is given by the equation (9). 

- At the moment t2=200, the slope identification still works, but the 
nonlinearity is switched to the equation (8). 

The schematic diagrams of the extremum control systems are given in Figure 3. 
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Figure 3 
a) “Original” structure from [2] of the Extremum Control System (“multiplier”) 
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b) Modified structure of the Extremum Control System (“switch”) 

The SIMULINK schemes, in accord to the Figures 3a and 3b, are presented in the 
Figures 4a and 4b. 

 
Figure 4a 

SIMULINK scheme (Figure 3a) 



 
Figure 4b 

SIMULINK scheme (Figure 3b) 

The results of the simulation are presented in a simplified form in Figures 5 and 6. 
With the gain of the Ho(s) equal to 2, the extremum point has a value of 5 
(gain×ϕ*=2×2.5), in accord to the static response curve from equation (8) and a 
value of 6 (gain×ϕ*=2×3) in accord to the static response curve from equation (9). 
Figure 5 presents the evolutions of the outputs z(t) for the studied cases. Figure 6 
presents the effect of the noise as output of the filtered signal z(t). 

   

Figure 5 
Output z(t) for the original (“multiplier”) and modified (“switch”) scheme 

  

Figure 6 
Filtered output for the original (“multiplier”) and modified (“switch”) scheme 



Conclusions 

Although the basic of both schemes (original and modified) are in fact the same, 
some improvements were ascertained. The evolution speed of the operating point 
to the extremum is faster in the case of the modified scheme: see Figure 5. As 
example, at t=200 when the extremum must have the value of 6, were obtained the 
values 6.88 for the original scheme and 6.10 for the modified scheme. At the time 
t=500, the extremum has the value of 5, but the obtained values are: 5.35 for the 
original scheme and 5.08 for the modified scheme. 

What about the noise filtering, the lack of the derivative element in the modified 
scheme leads to the reduction of the noise level in the AC-component from the 
output z(t). As it is possible to see from the figure 6, the middle value of the noise 
is bounded in the domain +5 /-5 in the original case and in the domain +2 /-2 in 
the modified scheme. 
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