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Abstract: This paper summarizes some results of the authors’ research that have been 
carried out in recent years on generalization of conventional aggregation operators. 
Aggregation of information represented by membership functions is a central matter in 
intelligent systems where fuzzy rule base and reasoning mechanism are applied. Typical 
examples of such systems consist of, but not limited to, fuzzy control, decision support and 
expert systems. Since the advent of fuzzy sets a great number of fuzzy connectives, 
aggregation operators have been introduced. Some families of such operators have become 
standard in the field. Nevertheless, it also became clear that these operators do not always 
follow the real phenomena. Therefore, the suggested new operators satisfy natural needs to 
develop more sophisticated intelligent systems. 
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1 Introduction 

Aggregation of several inputs into a single output is an indispensable step in 
diverse procedures of mathematics, physics, engineering, economical, social and 
other sciences. Generally speaking, the problems of aggregation are very broad 
and heterogeneous. Therefore, in this contribution we restrict ourselves to 
information aggregation in intelligent systems. 

The problem of aggregating information represented by membership functions 
(i.e., by fuzzy sets) in a meaningful way has been of central interest since the late 
1970s. In most cases, the aggregation operators are defined on a pure axiomatic 
basis and are interpreted either as logical connectives (such as t-norms and t-
conorms) or as averaging operators allowing a compensation effect (such as the 
arithmetic mean). 
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On the other hand, it can be recognized by some empirical tests that the above-
mentioned classes of operators differ from those ones that people use in practice 
(see [20]). Therefore, it is important to find operators that are, in a sense, mixtures 
of the previous ones, and allow some degree of compensation. 

One can also discern that people are inclined to use standard classes of 
aggregation operators also as a matter of routine. For example, when one works 
with binary conjunctions and there is no need to extend them for three or more 
arguments, as it happens e.g. in the inference pattern called generalized modus 
ponens, associativity of the conjunction is an unnecessarily restrictive condition. 
The same is valid for the commutativity property if the two arguments have 
different semantical backgrounds and it has no sense to interchange one with the 
other. 

These observations advocate the study of enlarged classes of operations for 
information aggregation and have urged us to revise their definitions and study 
further properties. 

2 Traditional Associative and Commutative 
Operations 

The original fuzzy set theory was formulated in terms of Zadeh's standard 
operations of intersection, union and complement. The axiomatic skeleton used for 
characterizing fuzzy intersection and fuzzy union are known as triangular norms 
(t-norms) and triangular conorms (t-conorms), respectively. For more details we 
refer to the book [9]. 

2.1 Triangular Norms and Conorms 

Definition 1   A triangular norm (shortly: a t-norm) is a function [ ] [ ]1,01,0: 2 →T  
which is associative, increasing and commutative, and satisfies the boundary 
condition (1, ) =T x x  for all [0,1]∈x . 

Definition 2   A triangular conorm (shortly: a t-conorm) is an associative, 
commutative, increasing [ ] [ ]1,01,0: 2 →S  function, with boundary condition 

(0, ) =S x x  for all [0,1]∈x . 

Notice that continuity of a t-norm and a t-conorm is not taken for granted. 

The following are the four basic t-norms, namely, the minimum TM  the product 
TP , the Łukasiewicz t-norm TL , and the drastic product TD , which are given by, 
respectively: 
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These four basic t-norms have some remarkable properties. The drastic product 
TD  and the minimum TM  are the smallest and the largest t-norm, respectively. The 
minimum TM  is the only t-norm where each [0,1]∈x  is an idempotent element. 
The product TP  and the Łukasiewicz t-norm TL  are prototypical examples of two 
important subclasses of t-norms (of strict and nilpotent t-norms, respectively). 

Definition 3   A non-increasing function [ ] [ ]1,01,0: →N  satisfying (0) 1=N , 
(1) 0=N  is called a negation. A negation N  is called strict if N  is strictly 

decreasing and continuous. A strict negation N  is said to be a strong negation if 
N  is also involutive: ( ( )) =N N x x  for all [0,1]∈x . 

The standard negation is simply ( ) 1 , [0,1]= − ∈sN x x x . Clearly, this negation is 
strong. It plays a key role in the representation of strong negations. 

We call a continuous, strictly increasing function [ ] [ ]1,01,0: →ϕ  with (0) 0=ϕ , 
(1) 1=ϕ  an automorphism of the unit interval. 

Note that [ ] [ ]1,01,0: →N  is a strong negation if and only if there is an 
automorphism ϕ  of the unit interval such that for all [0,1]∈x  we have 

1( ) ( ( ( ))).−= sN x N xϕ ϕ  

In what follows we assume that T  is a t-norm, S  is a t-conorm and N  is a strong 
negation. 

Clearly, for every t-norm T  and strong negation N , the operation S  defined by 

( , ) ( ( ( ), ( ))), , [0,1]= ∈S x y N T N x N y x y  (1) 

is a t-conorm. In addition, ( , ) ( ( ( ), ( )))=T x y N S N x N y  ( , [0,1]∈x y ). In this case 
S  and T  are called N -duals. In case of the standard negation (i.e., when 

( ) 1= −N x x  for [0,1]∈x ) we simply speak about duals. Obviously, equation (1) 
expresses the De Morgan's law in the fuzzy case. 

Generally, for any t-norm T  and t-conorm S  we have 

( ) ( ) ( ) ( ) ( ) ( ), , , and , , , ,≤ ≤ ≤ ≤T x y T x y T x y S x y S x y S x yD M M D  

where SM  is the dual of TM , and SD  is the dual of TD . 



These inequalities are important from practical point of view as they establish the 
boundaries of the possible range of mappings T  and S . Between the four basic t-
norms we have these strict inequalities: .< < <T T T TD P L M  

3 New Associative and Commutative Operations 

3.1 Uninorms 

Uninorms were introduced by Yager and Rybalov [19] as a generalization of t-
norms and t-conorms. For uninorms, the neutral element is not forced to be either 
0 or 1, but can be any value in the unit interval. 

Definition 4   A uninorm U  is a commutative, associative and increasing binary 
operator with a neutral element [0,1]∈e , i.e., for all [0,1]∈x  we have 

( , ) .=U x e x  

T-norms do not allow low values to be compensated by high values, while t-
conorms do not allow high values to be compensated by low values. Uninorms 
may allow values separated by their neutral element to be aggregated in a 
compensating way. The structure of uninorms was studied by Fodor et al. [11]. 
For a uninorm U  with neutral element ]0,1]∈e , the binary operator UT  defined 
by 

( , )( , ) =U
U e x e yT x y

e
 

is a t-norm; for a uninorm U  with neutral element [0,1[∈e , the binary operator 

US  defined by 

( (1 ) , (1 ) )( , )
1

+ − + − −
=

−U
U e e x e e y eS x y

e
 

is a t-conorm. The structure of a uninorm with neutral element ]0,1[∈e  on the 
squares 2[0, ]e  and 2[ ,1]e  is therefore closely related to t-norms and t-conorms. 
For ]0,1[∈e , we denote by eφ  and eψ  the linear transformations defined by 

( ) = x
e exφ  and 1( ) −

−= x e
e exψ . To any uninorm U  with neutral element ]0,1[∈e , 

there corresponds a t-norm T  and a t-conorm S  such that: 

• for any 2( , ) [0, ]∈x y e : 1( , ) ( ( ( ), ( )));−= e e eU x y T x yφ φ φ  

• for any 2( , ) [ ,1]∈x y e : 1( , ) ( ( ( ), ( ))).−= e e eU x y S x yψ ψ ψ  



On the remaining part of the unit square, i.e. on [0, [ ] ,1] ] ,1] [0, [= × ∪ ×E e e e e , it 
satisfies 

min( , ) ( , ) max( , ),≤ ≤x y U x y x y  

and could therefore partially show a compensating behaviour, i.e. take values 
strictly between minimum and maximum. Note that any uninorm U  is either 
conjunctive, i.e. (0,1) (1,0) 0= =U U , or disjunctive, i.e. (0,1) (1,0) 1= =U U . 

3.1.1 Representation of Uninorms 

In analogy to the representation of continuous Archimedean t-norms and t-
conorms in terms of additive generators, Fodor et al. [11] have investigated the 
existence of uninorms with a similar representation in terms of a single-variable 
function. This search leads back to Dombi's class of aggregative operators [7]. 
This work is also closely related to that of Klement et al. on associative 
compensatory operators [15]. Consider ]0,1[∈e  and a strictly increasing 
continuous [ ] ℜ→1,0  mapping h  with (0) = −∞h , ( ) 0=h e  and (1) = +∞h . The 
binary operator U  defined by 

1( , ) ( ( ) ( ))−= +U x y h h x h y  

for any 2( , ) [0,1] \{(0,1), (1,0)},∈x y  and either (0,1) (1,0) 0= =U U  or 
(0,1) (1,0) 1= =U U , is a uninorm with neutral element e . The class of uninorms 

that can be constructed in this way has been characterized [11]. 

Consider a uninorm U  with neutral element ]0,1[∈e , then there exists a strictly 
increasing continuous [ ] ℜ→1,0  mapping h  with (0) = −∞h , ( ) 0=h e  and 

(1) = +∞h  such that 

1( , ) ( ( ) ( ))−= +U x y h h x h y  

for any 2( , ) [0,1] \{(0,1), (1,0)}∈x y  if and only if 

• U  is strictly increasing and continuous on 2]0,1[ ; 

• there exists an involutive negator N  with fixpoint e  such that 
( , ) ( ( ( ), ( ))))=U x y N U N x N y  for any 2( , ) [0,1] \{(0,1), (1,0)}∈x y . 

The uninorms characterized above are called representable uninorms. The 
mapping h  is called an additive generator of U . The involutive negator 
corresponding to a representable uninorm U  with additive generator h , as 
mentioned in condition (ii) above, is denoted UN  and is given by 

1( ) ( ( )).−= −UN x h h x  



Clearly, any representable uninorm comes in a conjunctive and a disjunctive 
version, i.e. there always exist two representable uninorms that only differ in the 
points (0,1)  and (1,0) . Representable uninorms are almost continuous, i.e. 
continuous except in (0,1)  and (1,0) , and Archimedean, in the sense that 
( ]0, [)( ( , ) )∀ ∈ <x e U x x x  and ( ] ,1[)( ( , ) )∀ ∈ >x e U x x x . Clearly, representable 
uninorms are not idempotent. The classes minU  and maxU  do not contain 
representable uninorms. A very important fact is that the underlying t-norm and t-
conorm of a representable uninorm must be strict and cannot be nilpotent. 
Moreover, given a strict t-norm T  with decreasing additive generator f  and a 
strict t-conorm S  with increasing additive generator g , we can always construct 
a representable uninorm U  with desired neutral element ]0,1[∈e  that has T  and 
S  as underlying t-norm and t-conorm. It suffices to consider as additive generator 
the mapping h  defined by 

( )
( )1
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On the other hand, the following property indicates that representable uninorms 
are in some sense also generalizations of nilpotent t-norms and nilpotent t-
conorms: ( [0,1])( ( , ( )) ( ))∀ ∈ =U Ux U x N x N e . This claim is further supported by 
studying the residual operators of representable uninorms in [6]. 

As an example of the representable case, consider the additive generator h  
defined by 1( ) log ,−= x

xh x  then the corresponding conjunctive representable 
uninorm U  is given by ( , ) 0=U x y  if ( , ) {(1,0), (0,1)}∈x y , and 

( , )
(1 )(1 )

=
− − +

xyU x y
x y xy

 

otherwise, and has as neutral element 1
2 . Note that UN  is the standard negator: 

( ) 1= −UN x x . 

The class of representable uninorms contains famous operators, such as the 
functions for combining certainty factors in the expert systems MYCIN (see [5, 
18]) and PROSPECTOR [5]. The MYCIN expert system was one of the first 
systems capable of reasoning under uncertainty [2]. To that end, certainty factors 
were introduced as numbers in the interval [ 1,1]− . Essential in the processing of 
these certainty factors is the modified combining function C  proposed by van 
Melle [2]. The [ ] [ ]1,11,1 2 −→−  mapping C  is defined by 

1 min(| |,| |)

(1 )  , if min( , ) 0
( , ) (1 )  , if max( , ) 0.

, otherwise +
−

⎧ + − ≥
⎪

= + + ≤⎨
⎪
⎩

x y
x y

x y x x y
C x y x y x x y  



The definition of C  is not clear in the points ( 1,1)−  and (1, 1)− , though it is 
understood that ( 1,1) (1, 1) 1.− = − = −C C  Rescaling the function C  to a binary 
operator on [0,1] , we obtain a representable uninorm with neutral element 1

2  and 
as underlying t-norm and t-conorm the product and the probabilistic sum. 
Implicitly, these results are contained in the book of Hajek et al. [14], in the 
context of ordered Abelian groups. 

3.2 Nullnorms 

Definition 5   [3] A nullnorm V  is a commutative, associative and increasing 
binary operator with an absorbing element [0,1]∈a , i.e. ( [0,1])( ( , ) )∀ ∈ =x V x a a , 
and that satisfies 

( [0, ])( ( ,0) )
( [ ,1])( ( ,1) )
∀ ∈ =
∀ ∈ =

x a V x x
x a V x x

 (4) 

The absorbing element a  corresponding to a nullnorm V  is clearly unique. By 
definition, the case 0=a  leads back to t-norms, while the case 1=a  leads back 
to t-conorms. In the following proposition, we show that the structure of a 
nullnorm is similar to that of a uninorm. In particular, it can be shown that it is 
built up from a t-norm, a t-conorm and the absorbing element [3]. 

Theorem 1   Consider [0,1]∈a . A binary operator V  is a nullnorm with 
absorbing element a  if and only if 

• if 0=a : V  is a t-norm; 

• if 0 1< <a : there exists a t-norm VT  and a t-conorm VS  such that ( , )V x y  is 

given by 

1 2

1 2

( ( ( ), ( ))) ,  if ( , ) [0, ]
( ( ( ), ( ))) ,  if ( , ) [ ,1] ;

,  elsewhere

−

−

⎧ ∈
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⎪
⎩

a V a a

a V a a

S x y x y a
T x y x y a

a

φ φ φ
ψ ψ ψ  

• if 1=a : V  is a t-conorm. 

Recall that for any t-norm T  and t-conorm S  it holds that 
( , ) min( , ) max( , ) ( , )≤ ≤ ≤T x y x y x y S x y , for any 2( , ) [0,1]∈x y . Hence, for a 

nullnorm V  with absorbing element a  it holds that 2( ( , ) [0, ] )∀ ∈x y a  
( ( , ) max( , ))≥V x y x y  and 2( ( , ) [ ,1] )∀ ∈x y a  ( ( , ) min( , )).≤V x y x y  Clearly, for 
any nullnorm V  with absorbing element a  it holds for all [0,1]∈x  that 

( ,0) min( , ) and ( ,1) max( , ).= =V x x a V x x a  

Notice that, without the additional conditions (4), it cannot be shown that a 



commutative, associative and increasing binary operator V  with absorbing 
element a  behaves as a t-conorm and t-norm on the squares 2[0, ]a  and 2[ ,1]a . 

Nullnorms are a generalization of the well-known median studied by Fung and Fu 
[13], which corresponds to the case min=T  and max=S . For a more general 
treatment of this operator, we refer to [10]. We recall here the characterization of 
that median as given by Czogała and Drewniak [4]. Firstly, they observe that an 
idempotent, associative and increasing binary operator O  has as absorbing 
element [0,1]∈a  if and only if (0,1) (1,0)= =O O a . Then the following theorem 
can be proven. 

Theorem 2   Consider [0,1]∈a . A continuous, idempotent, associative and 
increasing binary operator O  satisfies (0,1) (1,0)= =O O a  if and only if it is 
given by 

2

2

max( , ) ,  if ( , ) [0, ]
( , ) min( , ) ,  if ( , ) [ ,1] .

,  elsewhere

⎧ ∈
⎪= ∈⎨
⎪
⎩

x y x y a
O x y x y x y a

a
 

Nullnorms are also a special case of the class of T  - S  aggregation functions 
introduced and studied by Fodor and Calvo [12]. 

Definition 6   Consider a continuous t-norm T  and a continuous t-conorm S . A 
binary operator F  is called a T  - S  aggregation function if it is increasing and 
commutative, and satisfies the boundary conditions 

[ ]( ) ( ) ( )( )( )
[ ]( ) ( ) ( )( )( ).,0,11,1,0

,0,10,1,0
xFSxFx
xFTxFx

=∈∀
=∈∀  

When T  is the algebraic product and S  is the probabilistic sum, we recover the 
class of aggregation functions studied by Mayor and Trillas [17]. Rephrasing a 
result of Fodor and Calvo, we can state that the class of associative T  - S  
aggregation functions coincides with the class of nullnorms with underlying t-
norm T  and t-conorm S . 

4 Generalized Conjunctions and Disjunctions 

4.1 The Role of Commutativity and Associativity 

One possible way of simplification of axiom skeletons of t-norms and t-conorms 
may be not requiring that these operations to have the commutative and the 
associative properties. Non-commutative and non-associative operations are 



widely used in mathematics, so, why do we restrict our investigations by keeping 
these axioms? What are the requirements of the most typical applications? 

From theoretical point of view the commutative law is not required, while the 
associative law is necessary to extend the operation to more than two variables. In 
applications, like fuzzy logic control, fuzzy expert systems and fuzzy systems 
modeling fuzzy rule base and fuzzy inference mechanism are used, where the 
information aggregation is performed by operations. The inference procedures do 
not always require commutative and associative laws of the operations used in 
these procedures. These properties are not necessary for conjunction operations 
used in the simplest fuzzy controllers with two inputs and one output. For rules 
with greater amount of inputs and outputs these properties are also not required if 
the sequence of variables in the rules are fixed. 

Moreover, the non-commutativity of conjunction may in fact be desirable for rules 
because it can reflect different influences of the input variables on the output of 
the system. For example, in fuzzy control, the positions of the input variables the 
''error'' and the ''change in error'' in rules are usually fixed and these variables have 
different influences on the output of the system. In the application areas of fuzzy 
models when the sequence of operands is not fixed, the property of non-
commutativity may not be desirable. Later some examples will be given for 
parametric non-commutative and non-associative operations. 

The axiom systems of t-norms and t-conorms are very similar to each other except 
the neutral element, i.e. the type is characterized by the neutral element. If the 
neutral element is equal to 1 then the operation is a conjunction type, while if the 
neutral element is zero the disjunction operation is obtained. By using these 
properties we introduce the concepts of conjunction and disjunction operations 
[1]. 

Definition 7   Let T  be a mapping [ ] [ ] [ ]1,01,01,0: →×T . T  is a conjunction 
operation if ( ,1) =T x x  for all [0,1].∈x  

Definition 8   Let S  be a mapping [ ] [ ] [ ]1,01,01,0: →×S . S  is a conjunction 
operation if ( ,0) =S x x  for all [0,1].∈x  

Conjunction and disjunction operations may also be obtained one from another by 
means of an involutive negation N : ( ) ( ) ( )( )( ), ,=S x y N T N x N y , and 

( ) ( ) ( )( )( ), ,=T x y N S N x N y . 

It can be seen easily that conjunction and disjunction operations satisfy the 
following boundary conditions: (1,1) 1=T , (0, ) ( ,0) 0= =T x T x , (0,0) 0=S , 

(1, ) ( ,1) 1= =S x S x . By fixing these conditions, new types of generalized 
operations are introduced. 



Definition 9   Let T  be a mapping [ ] [ ] [ ]1,01,01,0: →×T . T  is a quasi-
conjunction operation if (0,0) (0,1) (1,0) 0= = =T T T , and (1,1) 1=T . 

Definition 10   Let S  be a mapping [ ] [ ] [ ]1,01,01,0: →×S . S  is a quasi-
disjunction operation if (0,1) (1,0) (1,1) 1= = =S S S , and (0,0) 0=S . 

It is easy to see that conjunction and disjunction operations are quasi-conjunctions 
and quasi-disjunctions, respectively, but the converse is not true. 

Omitting (1,1) 1=T  and (0,0) 0=S  from the definitions further generalization can 
be obtained. 

Definition 11   Let T  be a mapping [ ] [ ] [ ]1,01,01,0: →×T . T  is a pseudo-
conjunction operation if  (0,0) (0,1) (1,0) 0= = =T T T . 

Definition 12   Let S  be a mapping [ ] [ ] [ ]1,01,01,0: →×S . S  is a pseudo-
disjunction operation if (0,1) (1,0) (1,1) 1= = =S S S . 

Theorem 3   Assume that T  and S  are non-decreasing pseudo-conjunctions and 
pseudo-disjunctions, respectively. Then there exist the absorbing elements 0 and 1 
such as ( ) ( ),0 0, 0= =T x T x  and ( ) ( ),1 1, 1.= =S x S x  

4.2 A Parametric Family of Quasi-Conjunctions 

Let us cite the following result, which is the base of the forthcoming parametric 
construction, from [1]. 

Theorem 4   Suppose 1 2,T T  are quasi-conjunctions, 1S  and 2S  are pseudo 

disjunctions and  are non-decreasing functions such 
that ( ) ( )1 21 1 1= =g g . Then the following functions are quasi-conjunctions: 

( ) ( ) ( ) ( )( )( )2 1 1 1 2, , , ,=T x y T T x y S g x g y  

( ) ( ) ( )( )2 1 1 1, , , ,=T x y T T x y g S x y  

( ) ( ) ( ) ( )( )( )2 1 2 1, , , , ,=T x y T T x y S h x S x y . 

By the use of this Theorem the simplest parametric quasi-conjunction operations 
can be obtained as follows ( , 0≥p q ): 

( ), ,= p qT x y x y  

( ) ( ), min , ,= p qT x y x y  

( ) ( ) ( ), = + −p qT x y xy x y xy . 



5 Distance-based Operations 

Let e  be an arbitrary element of the closed unit interval [0,1]  and denote by 

( ),d x y  the distance of two elements x  and y  of [0,1] . The idea of definitions of 
distance-based operators is generated from the reformulation of the definition of 
the min and max operators as follows 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

, if ,0 ,0 , if ,0 ,0
min( , ) , max( , )

, if ,0 ,0 , if ,0 ,0
⎧ ≤ ⎧ ≥⎪ ⎪= =⎨ ⎨> <⎪ ⎪⎩ ⎩

x d x d y x d x d y
x y x y

y d x d y y d x d y
 

Based on this observation the following definitions can be introduced, see [1]. 

Definition 13   The maximum distance minimum operator with respect to 
[ ]0,1∈e  is defined as 

( ) ( )
( ) ( )

( ) ( ) ( )

min
, if , ,

max( , ) , if , , .
min , , if , ,

>⎧
⎪= <⎨
⎪ =⎩

e

x d x e d y e
x y y d x e d y e

x y d x e d y e
 

Definition 14   The maximum distance maximum operator with respect to 
[ ]0,1∈e  is defined as 

( ) ( )
( ) ( )

( ) ( ) ( )

max
, if , ,

max( , ) , if , , .
max , , if , ,

>⎧
⎪= <⎨
⎪ =⎩

e

x d x e d y e
x y y d x e d y e

x y d x e d y e
 

Definition 15   The minimum distance minimum operator with respect to [ ]0,1∈e  
is defined as 

( ) ( )
( ) ( )

( ) ( ) ( )

min
, if , ,

min( , ) , if , , .
min , , if , ,

<⎧
⎪= >⎨
⎪ =⎩

e

x d x e d y e
x y y d x e d y e

x y d x e d y e
 

Definition 16   The minimum distance maximum operator with respect to 
[ ]0,1∈e  is defined as 

( ) ( )
( ) ( )

( ) ( ) ( )

max
, if , ,

min( , ) , if , , .
max , , if , ,

<⎧
⎪= >⎨
⎪ =⎩

e

x d x e d y e
x y y d x e d y e

x y d x e d y e
 



5.1 The Structure of Distance-based Operators 

It can be proved by simple computation that if the distance of x  and y  is defined 
as ( ), = −d x y x y  then the distance-based operators can be expressed by means 
of the min and max operators as follows. 

( )
( )
( )

( )
( )
( )

min min
max , , if 2 min , , if 2

max min , , if 2 , min max , , if 2
min , , if 2 min , , if 2

> − > −⎧ ⎧
⎪ ⎪= < − = < −⎨ ⎨
⎪ ⎪= − = −⎩ ⎩

ee

x y y e x x y y e x
x y y e x x y y e x
x y y e x x y y e x

 

( )
( )
( )

( )
( )
( )

max max
max , , if 2 min , , if 2

max min , , if 2 , min max , , if 2
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ee

x y y e x x y y e x
x y y e x x y y e x
x y y e x x y y e x

 

The structures of the minmaxe  and the minmine  operators are illustrated in Figure 1. 

  
Figure 1 

Maximum distance minimum operator (left) and minimum distance minimum operator (right) 

Conclusion 

In this paper we summarized some of our contributions to the theory of non-
conventional aggregation operators. Further details and another classes of 
aggregation operators can be found in [1]. 
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