
Algorithmic Design of a Fuzzy-Neural Method 

William Franklin 
University of Maryland/General Dynamics Land Systems 
franklwm@gdls.com 

Abstract: A Fuzzy-Neural method is often presented as a black-box toolkit for MathCad. 
The algorithmic design is hidden inside this black box approach. This paper is intended to 
develop the algorithmic design of a Fuzzy-Neural method in which fuzzy logic provides a 
front end input to a neural network that then provides a threshold weighted output from a 
directed acyclic graph. Fuzzy logic provides an initialization of data inputs while neural 
networks learn from this input and adapt to it to provide a weighted decision output. From 
a first glance it would appear that the algorithms that would be used by fuzzy logic are 
sorting and combinatorial or numerical in order to do the abstract algebra that fuzzy logic 
requires. Since neural networks operate off the input from a directed acyclic graph they 
require graph, combinatorial and numerical algorithms. The objective of this paper is to 
design and develop generic algorithms as well as understand the required algorithmic 
approach to this technology. The Appendix will feature in detail all algorithms that are 
developed and are listed off to the side in parenthesis throughout the text. 
Applications to prognostics, predictive trending, of system faults will also be examined. 

1 Fuzzy Logic Input 
Fuzzy logic is used for data input into a Fuzzy-Neural method and provides 
initialization. Easy to understand, debug and develop fuzzy logic can explain but 
cannot learn as neural networks do. The main drawback with fuzzy logic is that it 
requires a rule based approach that utilizes heuristic adaptations. Consider an 
application regarding engine diagnostics that is used to characterize failure 
signatures that will be used for prognostics (fault prediction). Two data sets A and 
B (normalized to 1.0) have a corresponding distribution of data that is mapped 
according to the membership level representing a degree of certainty. This 
membership level requires a function that discriminates the data for membership. 
The evolution from crisp data to fuzzy data is shown in Figures 1 to 3 [1]. 

The triangular waveform of the membership function is most common and 
represents a gradual slope for error overlap in temperature value. This broadening 
in temperature value is determined by the heuristics If (condition1) And 
(condition2) Then result. These results are then combined into a logical sum for 
each membership function to produce the broadened waveform. 



 
Figure 1 

Crisp Sets and Variable 

Figure 2 
Fuzzy Sets and Crisp Variable 

 
Figure 3 

Fuzzy Sets and Fuzzy Variable 

A degree of membership is given by the ordinate value from 0 to 1. The heuristics 
If (condition1) And (condition2) Then result are representative of a transition 
from initial state vertices to goal state vertices in a state space graph. Such a state 
space graph could be represented as a fault diagnostics decision tree with nodes 
describing different subsystem failure checks [2]. Decision trees typically utilize 
Bayesian theorems for branching left or right from the parent node. A decision 
tree utilizing fuzzy logic would have to be at least ternary with left, middle and 
right reaction leafs to allow for the possible states {yes, maybe, no}. For a ternary 
tree utilizing fuzzy logic the minimum number of comparisons would be O(log n) 
for n nodes [3 (pp. 339-344)]. 



Following the methodology of abstract algebra, fuzzy logic merges data sets A 
and B together in competitive processing to determine the best input values. The 
process involves an intersection of the two sets of data for A and B: 

µA∩B(x,y) = min[µA(x),µB(y)]           (min mergesort algorithm [3]) (1) 

This approach shows how data is correlated initially in fuzzy logic. 
Defuzzification is used to derive a single output crisp value. This defuzzification 
represents a weighted union of the intermediary output sets C1(z) and C2(z) that 
provides a centroid value as a weighted output. This 

is represented in the following equations (where C1 is A1∩B1, etc): 

µC(x) = max[µC1(x), µC2(x)]               (max mergesort algorithm [3]) (2) 

followed by the centroid calculation 

 (weighted sort algorithm [1]) (3) 

 

 An example of the fuzzy logic heuristics is given by the following graph [1] 

 Rule 1: If x is A1 and y is B1 Then z is C1 

 Rule 2: If x is A2 and y is B2 Then z is C2 

 
Figure 4 

Centroid Calculation 

∑
∑

=

== q

i iC

q

i iCi
COA

z

zz
Z

1

1*

)(

)(

μ

μ



 

 

Each dataset A and B represents one waveform. The min mergesort algorithm 
collects the data that intersects the overlapping regions between the waveforms of 
A and B. In a similar manner the max mergesort algorithm collects the data that is 
not intersected in the overlapping region between the waveforms of A and B. 
Instead this data from the max mergesort is a union between the two datasets and 
is data collected above a threshold maximum setting in the waveforms. Usually 
this threshold maximum is taken at the 50% crossover between waveforms. 

The min and max mergesort algorithms utilize the divide-and-conquer technique 
[3 (pp. 121-126)]. This provided a straightforward competitive comparison 
between the two data sets. Although the greedy algorithm Kruskal works with sets 
and unions it provides path optimization for acyclic graphs. Fuzzy logic deals with 
data sorting for the intersection and union of data sets. The intersection data would 
correspond to a cyclic graph and this would invalidate the use of Kruskal’s 
algorithm. Each dataset A, B is first sorted in increasing order using quicksort [3 

(pp. 127-132)] which has an average efficiency of O(n log n). 

For mergesort the number of worst case comparisons is known to be Ө(nlog n). A 
worst case estimate for the total running time of these mergesort algorithms is 
given as [3 (pp. 194-197)] 

T(n) = Tsort(n) + Tsearch(n) (4) 

which is O(n log n). In the case of the centroid calculation requiring a weighted 
sort algorithm there is only a simple calculation each for the numerator and 
denominator values. The number of comparisons is O(2n) and this also provides a 
good estimate for the total running time. 

2 Neural Networks 
Neural networks serve as the processing back end for a Fuzzy-Neural method and 
provide adaptive learning. Difficult to understand and debug, neural networks rely 
on fuzzy logic to provide the data initialization. The input from fuzzy logic is 
provided as a set of nodes that present topological sorting in the form of digraphs. 
This will allow a feed forward back propagation input for learning [3 (pp. 170-
173)]. These digraphs provide breath first search and are dags, directed acyclic 
graphs that have only forward edges and allow convergence to a solution as 
indicated by the Output units ajWj,i. In the topological sorting [4] below of Figure 
5 for a neural network the final output unit is given as O = A + B + C + D. This 
combinatorial network becomes a maximum flow network with maximum 

09.5
00

0109876543201

3
1

3
1

3
1

3
1

3
2

3
2

3
2

3
1

3
1

3
1

3
1

3
1

3
2

3
2

3
2

3
1

* =
+++++++++

⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅
=COAZ



bipartite matching [5]. Each hidden unit can be represented as a summation from 
the input units as the following equations show: 

Output Unit (at external node i with j internal nodes) = ∑j aj Wj, i   • (leaf nodes)
 (5) 

Hidden Unit (at internal node j with k leaf nodes) = ∑k ak Wk, j (6) 

given k Input Units.  This can be expressed comprehensively as 

Output Unit (at external node i) = ∑j aj Wj, i ∑k ak Wk, j (7) 

The associated numeric weights Wj,i represent the connection strength from a 
given nodal sequence to the next level nodal sequence. An activation function g 
derives the output and each subsequent output nodal sequence can be given as [4 
(p. 737)] 

ai = g [ ∑j  aj Wj, i   ] (8) 

aj = g [ ∑k ak Wk, j  ] (9) 

whereby the node is active (g near 1) when the right inputs are given and (g near 
0) when the wrong inputs are given. Adjusting the weights Wk, j changes the 
activation function and how the network operates. It is better to have a 
differentiable activation function that allows a gradient response for the weight 
learning algorithm. The sigmoid function provides optimal behavior since it yields 
a wide differentiable slope change [6]. 

A bias weight W0, j could be established such that the node is activated when the 
weighted sum of (real inputs – bias inputs) is greater than W0, j and this adjusts 
the slope of the gradient response making the learning process faster or slower. 
These adjustments also allow the minimization of error on the training set of 
defuzzified data. The back propagation of error from the output node to the inner 
nodal sequences can be expressed as a modified error ∆i with Errori (error 
between true output and training set input) in the following equations [4  (pp.741-
746)] 

∆i ~ Errori  * ∂g / ∂Wj, I (10) 

and this modified error is back propagated as 

∆j = (∂g / ∂Wk, j) * ∑i Wj, i  * ∆I (11) 

The neural network is representative of a maximum bipartite matching graph 
whose cardinality is determined by the weights Wj,i between different levels of 
nodal sequences. This cardinality represents those nodal level connections that 
actually provide the data transmittal to the output [5]. Figure 5 has a cardinality of 
1 as indicated by the heavy orange line and this is established by the fuzzy logic 
heuristics. 

The Perceptron Learning and Back Propagation algorithms utilize equations 5-11. 



O

A B C D

2 63 51 4 7 8

Output units
aj   Wj,i

Hidden units
ak   Wk,j

Input units
ak  

Figure 5 
Breadth First Search – Neural Network Nodes 

 
The Perceptron-Learning algorithm applies to a single layer input to output neural 
network and the number of comparisons and the total time are both estimated by 
O(k) for k data samples. As shown in Appendix 5 this algorithm consists of 
straightforward multiplications and summations. The Back Propagation algorithm 
which applies to a multiplayer network is more complicated as shown in Appendix 
6. Applying the fuzzy logic heuristics allows this algorithm to reduce from a high 
order polynomial given by O(Nk • L • Nj • Ni) to a best case of O(L). The 
combination of fuzzy logic heuristics and Back Propagation results in a greedy 
algorithm approach such as a inverted Dijkstra’s for path optimization [3  (pp. 319-



323)]. The term modified is used to indicate that the path chosen is not the shortest 
in distance but the path with the highest weight. The weight would be determined 
from initial heuristic conditions. Appendix 6 indicates this in red. Both the 
Perceptron Learning and Back Propagation algorithms also utilize the concepts of 
backtracking and branch and bound with state spaces for difficult combinatorial 
problems [3 (pp. 367-385)]. 

3 Preventive Health Maintenance 
It is expected that by combining the attributes of Fuzzy Logic and Neural 
Networks into a Fuzzy-Neural method that this would provide a prognostic, 
predictive trending, tool for Preventive Health Maintenance (PHM). A successful 
prognostic requires accuracy and repeatability in the measurements and data 
collection as well as precision in the tools used in these measurements. The 
combination of all three of these – accuracy, repeatability and precision (ARP) 
must minimize the overall error of measurement in order to provide sufficient 
predictive trending and lead times to forecast the fault mechanisms in the system 
under study. If ARP does not satisfy these requirements then either prognostics is 
not measurable or not reliable in providing any predictive trending. Another 
serious consequence of unsuccessful ARP is that the lead times provided by 
predictive trending may not be early enough to avoid imminent failure 
mechanisms in the system under study. Short lead times before the onset of the 
failure results in the transition into diagnostics of the fault and causes prognostics 
to be a useless endeavor. For the Fuzzy-Neural method to be successful it will 
require datasets from high ARP quality measurements. Such datasets will be 
needed to train the neural network and initialize it with the proper weights and 
then the actual datasets of real world results can be evaluated. 

An example of the result of providing corrupted ARP quality datasets was a 
classified SECRET test by the U.S. Army for developing a neural network linked 
to sensing pixel images that would do pattern recognition of tanks. To initialize 
the neural network and calibrate the weights two training datasets were provided 
of tanks camouflaged behind trees, bushes etc. and the same scenes without the 
tanks.  During the training phase the neural network correctly picked out the tanks 
and the results were considered successful. Upon final testing with random field 
scenarios it was found that the neural networks were unsuccessful at recognizing 
the tanks. 

Analysis of the training dataset showed that the images taken of camouflaged 
tanks had all been taken on a cloudy day and the images without the tanks had 
been taken on sunny days. In calibrating the decision weights the neural network 
had focused on the brightness of the background terrain and not if a tank was 



present or not. By not providing datasets with sufficient diverse scenarios the 
datasets were inaccurate and did not train the neural network properly [7]. 

Database archiving leads to profiling fault characteristics. In order to 
prognosticate the future one must know the past and diagnostics provides past 
profiles of fault diagnostics which populate database archives. By setting fault 
limits and trending behavior the onset of a fault could be mapped over time as in 
Figure 6 [1]. 

 
Figure 6 

Prognostics to Diagnostics Transition 

At the failure limit there is a transition from prognostics to diagnostics. The failure 
behavior that has been diagnosed yields useful trending behavior for future 
referencing. One can build up database mining, clustering and warehousing from 
this. Fuzzy-Neural methods must work in conjunction with database archives to be 
proficient. The following table could be established to represent database 
archiving from Figure 6 behavior: 

Parametric Data Late Limit Standard Early Limit 

Power Management Fault ?  Fault ? 

Bit Commands Fault ?  Fault ? 

Temperature Fault ?  Fault ? 

Voltage Fault ?  Fault ? 

One application for using this Fuzzy-Neural method for PHM is in modeling the 
behavior of electrical systems such as electromagnetic sensors. Electrical systems 

 

TTF

Failure Limit 

Standard 
Operating 
Condition

Now
Lead Time

Uncertainty 
Zone



are difficult to model because of electrical jitter, white noise and random spiking 
behavior that is indicative of an impending failure. One approach for this Fuzzy-
Neural method is to determine the theoretical signal response S and compare this 
to what is actually measured to infer how the system under study is actually 
behaving. A theoretical response is given by [8] 

S(t, V, T) = ∫ Response(λ, T) • VoltageBias(t, V, T) • BW(λ) dλ (12) 

for parameters (t-time, V-voltage, T-temperature, λ-wavelength of radiation, BW 
– bandwidth). To determine if there is a discrepancy in signal due to the onset of 
noise behavior we would examine the curve fitting output of the Fuzzy-Neural 
method as 

S(t, V, T)|i=O = g [∑j  Wj, i (V, T) • g [∑k sk (t)  • Wk, j (V, T)] ] (13) 

where sk (t) are the data samples provided as input from the fuzzy logic 
evaluation. 

This equation is a numerical computation algorithm and provides the localization 
of what is contributing to the failure behavior of the system under study. Appendix 
7 features the application of equation 13 to Figure 5. 

 
Figure 6 

Distributed Fuzzy-Neural Method 

As Figure 6 indicates the fuzzy logic heuristics could be distributed throughout the 
neural network [1]. Specific heuristic conditions and results would determine the 
connection strengths between nodal sequence levels and their corresponding 
numeric weights. The activation function as given by equations (8, 9) would 
exhibit these heuristic conditions in its gradient response. It is these distributed 
fuzzy logic heuristics that allows the neural network to adapt as it learns through 
the connection strengths. By appropriate condition and results the efficiency of the 
network can be increased significantly from initial learning when all the 
connections have to be established. A feedback loop from the output back to the 
input would establish faster convergent learning capabilities. 

Input IF-part Rules THEN-part Output

x1

x2 

PC1

PC2 

&

&

&

&

Time to failure Σ



Conclusion 

This paper not only presented an algorithmic approach to a Fuzzy-Neural method 
but also showed how fuzzy logic and neural networks must be coupled together to 
provide an efficient adaptive transform method. The whole process is adaptive and 
the neural network responds to the fuzzy logic input and logistics. Artificial 
intelligence is now established and progresses. Overall, the Fuzzy-Neural method 
has strong potential applications in prognostics, predictive trending, for Preventive 
Health Maintenance of high frequency electronic systems or systems of nonlinear 
behavior. Systems that exhibit nonlinear behavior are hard to analyze because the 
physical models are not readily established. However, there is miniscule 
allowance for experimental error as any deviance in ARP can bias the results. 
Such sensitivity makes the overall approach questionable for practical use outside 
of nonlinear systems. 

Appendix 
1)   µA∩B(x,y) = min[µA(x),µB(y)]                       (min mergesort algorithm [3]) 
// Algorithm compares data set A at value x to data set B at value y and chooses the 
// minimum value between the two sets. This corresponds to an intersection between the 
// two sets where membership functions for A, B overlap in degree of membership value. 
// The intersection of the membership functions determines the median value for merging  
// Inputs sorted data sets A[0,..x,….n-1], B[0,..y,….n-1]; Output intersection set A∩B[0...n-
1] 
// Mergesort algorithm is applicable for both # 2 and 3 
Nmedian = static_cast< int > ( f*n) + 1 // assume f is factor like 0.5 for 50% on waveforms 
Merge(A,B,A∩B,Nmedian,True) // for intersection 

2)   µC(x) = max[µC1(x), µC2(x)]                            (max mergesort algorithm [3]) 

// Algorithm compares data set C1 at value x to data set C2 at value x and chooses the 
// maximum value between the two sets.  This corresponds to a union between the two 
datasets. 
// Inputs data sets C1[0….n-1], C2[0….n-1]; Output set C[0….n-1] 
Merge(C1, C2, C, Nmedian, False)  // for union 
vector<int> Merge(vector<int> Set1, vector<int> Set2, vector<int> FinalSet, 
                          int Nmedian, bool check) //using STL for C++ application, could use arrays 
if( check == True) 
{ int i=0, j=0, k=0, p=Nmedian, q=Nmedian; }                                             // intersection #2 
else 
{int i=Nmedian, j=Nmedian, k=Nmedian, p=Set1.size(), q=Set2.size() }              // union #3 
while( (i < p) && (j < q) ) 
{ 
         if( Set1[i] <= Set2[j] ) 
         {  FinalSet[k] = Set1[i];  i++;  } 
         else 
         {  FinalSet[k] = Set2[j];  j++;  }     
         k++; 
} 
if(i == p)  
   for (int u = j; u <= q-1; u++) 
        FinalSet[u] = Set2[u]; 



else 
   for(int m = i; m <= p-1; m++) 
        FinalSet[m] = Set1[m]; 
return FinalSet; 

 
3)    
 
Weighted Sort Algorithm [1] 
// Input grid parameter values z[1..q]; data set C[0..n-1] which is described by # 2 and 3 
above 
// Output centroid calculation Zcoa as numerator / denominator for crisp value. 
numerator = 0 
for i = 1 to q 
     numerator = numerator + ( z[i] * C[i] ) 
end for 
// we have numerator, now normalize to denominator 
denominator = 0.0 
for i = 1 to q 
     denominator = denominator + C[i] 
end for 
if ( denominator != 0.0 ) 
   Zcoa =  numerator / denominator 
else  
   Zcoa = numerator 

4)   Perceptron Learning Algorithm [4 (p. 741)] 
// inputs: example set with input vector X(x1, …, xN) and output y, 

// network - perceptron with weights Wj,i and activation function g 
function Perceptron-Learning(samples, network) returns network 
 repeat 
  for each k in samples do 
     in = ∑j Wj,i * xj[k] 
     Error = y[k]–g(in) 
     Wj,i  =  Wj,i + α * Error * xj[k] * ∂g/∂Wj,i  
                      end for 
 until stop_criterion 
return network 
5)   Back Propagation Algorithm [4  (pp. 744-748)] 
// inputs: examples – input vector x, output vector y, weights Wj,i and g, 
// inputs: network – multilayer network L layers. 
function Back_Prop(examples, network) returns neural network 
     repeat 
        for each k in samples do 
      if fuzzy logic condition1 then k = 1 // as in Figure 5 
      // reduction to single source allows Dijkstra’s approach 
  for each node j in input layer do 

∑
∑

=

== q

i iC

q

i iCi
COA

z

zz
Z

1

1*

)(

)(

μ

μ



               aj = xj[k] 
           end for 
              for layer = 2 to L do 
                ai = g [∑j aj Wj,i] 
            end for 
              for each node i in the output layer do 
                Δi = (yi[k]–ai) * ∂g/∂Wj,i 
            end for 
            for layer = L – 1 to 1 do          // back propagate L-1 node layers 
                  for each node j in layer do 
                if fuzzy logic condition2 then j = D // as in Figure 5   
           Δj = (∂g/∂Wk,j) * ∑i Wj,i * Δi        
           for each node i in layer + 1 do 
                     if fuzzy logic condition3 then i = 1 //as in Figure 5 
                   Wj,i = Wj,i + α * aj *Δi 
                     if fuzzy logic condition3 then break 
                    end for 
               if fuzzy logic condition2 then break   
               end for 
            end for 
      if fuzzy logic condition1 then break   
      end for 
    until stop criterion 
return Neural-Network  
Note: Error = ∑j ( yj – hw(xj) ) where hw(x) is the output of the perceptron on the example, 
y is the calibrated true output and α is the learning rate. The fuzzy logic heuristic 
conditional statements have to be worked in such that if the condition is satisfied then the 
loop method is ignored and only one value is used. This results in a modified Dijkstra 
algorithmic approach. 
6)   Application of equation 13 to Figure 5 [4 (pp. 737 – 740)]  
Since there is only one output i = 0, j = A to D, k = 1 to 8 
 
S(t, V, T) = g [∑j Wj, O (V, T) • g [ s1 (t)  • W1, j (V, T) + …… + s8 (t)  • W8, j (V, T)] ] 
 
after summing over j this can be expressed as 
S(t, V, T) = 
           g [WA, O (V, T) • g [ s1 (t) • W1, A (V, T) +…… + s8 (t) • W8, A(V, T)] + 
                   WB, O  (V, T) • g [ s1 (t) • W1, B (V, T) +… + s8 (t) • W8, B(V, T)] + 
                   WC, O  (V, T) • g [ s1 (t) • W1, C (V, T) + …+ s8 (t) • W8, C(V, T)] + 
                   WD, O (V, T) • g [ s1 (t) • W1, D (V, T) + … + s8 (t) • W8, D(V, T)] ] 
 
Note: g is an activation function and not a multiplicative factor.  So all the arguments inside 
the functions are summed parameter values that conform to the behavior of the function g. 

 

 



References 

The author thanks fellow coworker Arthur Townshend/General Dynamics Land 
Systems for constructive criticism of this paper. 

[1] Vachtsevanos, G., Fault Diagnostics/Prognostics for Equipment Reliability 
and Health Maintenance, Seminar by Georgia Institute of Technology for 
Distance Learning and Professional Education, May 18-21, 2004 Atlanta, 
Ga., Section III Tools and Toolboxes 

[2] Turban E., Aronson J., Liang T-P., Decision Support Systems and 
Intelligent Systems, Upper Saddle River, New Jersey: Prentice Hall, 7th ed. 
2005, 604-623 

[3] Levitin A., Introduction to The Design & Analysis of Algorithms, Boston: 
Addison Wesley, 2003 

[4] Russell S., Norvig P., Artificial Intelligence A Modern Approach, Upper 
Saddle River, New Jersey: Prentice 2nd ed. 2003, 736-748 

[5] Cormen T., Leiserson C., Rivest R., Stein C., ch. 26 Maximum Flow, 
Introduction to Algorithms, Boston, Massachusetts: McGraw-Hill 2nd ed. 
2001, 664-669 

[6] Weisstein, Eric W. "Sigmoid Function." From MathWorld—A Wolfram 
Web, Resource. http://mathworld.wolfram.com/SigmoidFunction.html 

[7] Null L., Lobur J., The Essentials of Computer Organization and 
Architecture, Sudbury, Massachusetts: Jones and Bartlett Publishers 3rd ed. 
2003, 438-441 

[8] Author William Franklin’s experience working in laser systems lab for 
many years 


