
On Chained Cryptographic Puzzles

Bogdan Groza, Dorina Petrica
Department of Automation and Applied Informatics, Faculty of Automatics and
Computers, Politehnica University of Timisoara, Bd. Vasile Parvan nr. 2, 300223
Timisoara, Romania, E-mail: bogdan.groza@aut.upt.ro

Abstract: Cryptographic puzzles provide an elegant solution in combating denial of
services attacks. In this paper we introduce the concept of chained cryptographic puzzle.
We define two kinds of chained puzzle constructions: linearly chained puzzles and
randomly chained puzzles. The first construction prove to be very useful in some scenarios,
from which the more general is in which a client may choose to solve only some of the
puzzles that were sent by the server and gain resources from the server according to the
amount of puzzles that he solved.

Keywords: cryptography, cryptographic puzzle, denial of services, security

1 Introduction

Cryptographic puzzles have many applications in the field of security. They are
most commonly used in eliminating denial of services attacks, a number of papers
proposed the use of cryptographic puzzles in combating connection depletion
attacks, creating DoS resistant authentication etc. [1], [3], [5], [6]. Also
cryptographic puzzles were proposed to be used for constructing time capsules
such as in [7] or for partial key escrow techniques [2].

The idea which stands behind the use of cryptographic puzzles in combating
various aspects of DoS is simple: if there is no evidence of an attack on the side of
the entity which we call sever then resources are allocated to the clients normally,
if an evidence of an attack occurs (the number of request drastically increases)
then the server sends puzzles to each client that request resources. In this way a
potential attacker which has request many resources has to solve many puzzles
and his own computational resources are drastically consumed.

This point of view is correct, but for an honest client things may be a bit different.
Imagine a honest client that has gained resources on a number of servers and all
these servers are under attack, suddenly the client receives a puzzle from each
server and solving the puzzle will consume a great amount from his own
resources. It will be preferably for the client to continue to use the resources from

the severs in a selective order, it is likely that some of the servers are of more
interest for the honest client than others. In this paper we introduce the notion of
chained cryptographic puzzle. Chained puzzles offer more flexibility in such a
scenario since a client may solve only a particular amount of puzzles from the
chain and gain resources according to the amount of puzzles that he solved.

In Section 2 we enumerate some common constructions of cryptographic puzzles.
In Section 3 we introduce the notion of chained puzzle and in Section 4 we give
some practical scenarios in which chained puzzles can be used. In Section 5 we
conclude.

2 Some Puzzle Constructions

In this section we consider to enumerate some of the most prominent solutions to
construct cryptographic puzzles.

2.1 One Way Function Inversion Puzzles

One way functions and in particular hash functions provide the first solution for
constructing cryptographic puzzles. Using hash functions is a good idea since
these are the simplest cryptographic primitives and require low computational
power for creating the puzzle. The idea which stands behind puzzles constructed
on the inversion of a one-way function is quite simple: in order to solve a puzzle
an entity must find what value was the input of the one-way function in order to
give a particular output. This means that the puzzle can be constructed with the
following relation:

() , || lP f randσ σ ρ= = (1)

Given the value of P and ρ an entity must find the random l bit value, by

lrand we denote a random l bit value, which was concatenated with ρ to give
the particular result. This is equivalent to searching a key space of size 2l and can
be achieved on an average of 12l− hash function computations, l is also called the
difficulty level of the puzzle.

2.2 Discrete Logarithm Inversion Puzzles

The idea which stands behind the construction of a discrete logarithm puzzle is of
course to invert the discrete logarithm. Discrete logarithm puzzles provide
additional properties that make them useful in some scenarios [1], [2].

Such a scenario, in which discrete logarithm puzzles can be used, is in paper [1]
were the notion of bastion is introduced. The bastion is a secure entity which
creates puzzles in order to protect a number of servers by sending the puzzles to
the clients. In order to construct the puzzles a Diffie-Hellman mechanism is used.
In brief, the idea is the following: a server publishes the value of xa and then the
bastion publishes ya . Since the following relation holds:

() ()y xx y x ya a a ⋅= = (2)

Both the server and the bastion are aware of the value of xya , the client receives
from the bastion the value of ya and only a partial information about the value of
y (for example all but the last l bits of y). Solving the puzzle means to find the

value of xya , of course in order to compute xya the client must find the value of
y and this will require inverting the discrete logarithm based on the partial

information that is known. The great advantage of this construction is that a
bastion can protect many servers without involving them in the construction of the
puzzles.

2.3 Exponent Reduction Puzzles (Time-Lock Puzzles)

The use of the discrete power function was proposed in [7]. Such a construction
can be used in order to construct a time-lock puzzle; this works like a time capsule
which consists in a message that can be deciphered only after a period of time.
The construction is based on the fact that while working with the power function
in nZ the exponents can be reduced modulo ()nφ . If the following function is
used:

() 2 modf x x n= (3)

Then computing the composition of the function with herself for η times can be
achieved easily with the following relation:

() ()2 mod modnf x x n
η φη = (4)

This can be easily done by an entity which knows the factorization of n ;
otherwise this became a sequential process which requires η compositions. For
large values of η the following relation can be used to construct the time-lock
puzzle:

2 modKP K a n
η

= + (5)

Solving the puzzle means finding the value of K . Given the value of a and η an

entity which is not in possession of the factorization of n can compute 2 moda n
η

only with η successive squaring and only then it can recover the key K from KP
in order to decrypt a particular message.

3 Chained Cryptographic Puzzles

A chained puzzle consists in a number of puzzles which may be solved only in a
precise order. We will define the puzzle set as { }0 1 1, ,..., nP P P −Π = and the relation

of order as { }: 0,1Ω Π×Π → . For any i j≠ it holds that (), 1i jP PΩ = if solving

iP requires the solution of jP and (), 0i jP PΩ = otherwise. Therefore a chained

puzzle is formed by a set of puzzles Π and a relation of order Ω . Obviously the
set of puzzles and the relation of order form a directed acyclic graph and for some
,i j if (), 1i jP PΩ = then (), 0j iP PΩ = since otherwise it will be impossible to

solve the puzzle; therefore in each puzzle chain there is at least one puzzle that
does not depend on any other puzzle.

In the following paragraphs we will be concerned with puzzles constructed on
hash functions since these are the simplest cryptographic primitives and offer a lot
of computational advantages; however the concepts introduced may be extended
as well for puzzles constructed with other one-way functions, for example
functions over groups of integers.

We define two kinds of chained puzzles:

a) Linearly chained puzzles. A linearly chained puzzle is a set of puzzles in
which a puzzle iP depends on exactly one puzzle jP , of course there will be
exactly one puzzle which does not depend on any other puzzle in order to
make it possible to solve the chain.

b) Randomly chained puzzles. Randomly chained puzzles are a generalization
of linearly chained puzzle in which the puzzles are chained at random; again
there will be exactly one puzzle which does not depend on any other puzzle.

In order to construct a linearly chained puzzle we will use a one way hash function
f , by lrand we always denote a new sequence of l random bits, therefore

l lrand rand≠ since we always refer to a new sequence of l random bits. We
define the first puzzle as:

()2
0 0 0 0, || lP f randσ σ ρ= = (6)

The symbol || denotes concatenation. The following relation is used to construct
the rest of the puzzles:

() () ()2
1, || ,0i i i i l iP f rand f i nσ σ ρ σ −= = ⊕ < < (7)

It is necessary to compute the value of ()1if σ − and only then XOR it with
||i lrandρ since otherwise if we XOR 1iσ − with ||i lrandρ it follows that

() () ()1 1|| || ||i i l i l i i lrand rand randσ ρ ρ ρ ρ− −= ⊕ = ⊕ which will make the
solution of iP independent on the solution for 1iP− . Solving puzzle iP , 0 i n≤ <
means to find the value of iσ given iρ such that ()2

i iP f σ= which is as hard as

searching a key space of size 2l taking on average about 12l− key verifications;
since each key from the key space will require two hash function computations the
computational effort to recover a key is about 2l hash computations. Since the
inversion of the one-way function is computational infeasible, the computation of

iσ will require the value of 1iσ − and 2l hash computations. Figure 1 illustrates
the construction of such a linearly chained puzzle.

0ρ lrand

||

0P

1ρ lrand

||

1P

2ρ lrand

||

2P

()2
0f σ()0f σ

()1f σ ()2
1f σ

()2
2f σ

0σ

1σ

2σ

1nρ − lrand

||

1nP −

()2nf σ −

()2
1nf σ −

1nσ −

()2f σ

Figure 1

An example of linearly chained puzzle

In order to solve the chained puzzle a client must solve the puzzles in the order
that they were constructed; the relation of order Ω is defined as follows:

() 1, 1
, , {0,1,..., 1}

0, 1 i j

i j
P P i j n

i j
= +⎧

Ω = ∈ −⎨ ≠ +⎩
 (8)

If the order in which they were constructed is unknown to the client (this can be
achieved by sending the puzzles from chain to the client in a random order) then
the client can still solve the puzzle but there are ()1 / 2n n⋅ − possible
combinations. However, we do not see strong reasons to hide the order in which
the puzzles were constructed since if one may want to increase the difficulty of
solving the chained puzzle he can simply increase the level of the puzzles or their
number.

Constructing a randomly chained puzzle can be easily done, in the same way as
for the linearly chained puzzles. Relation (6) is used again to define 0P . Puzzle iP
can be made to randomly depend on any puzzle jP for all 0,..., 1j i= − by
computing iP with the following relation:

()2
i iP f σ= ,

() () () () ()()1 1 0 0|| , ... ,i i l i i i irand P P f P P fσ ρ σ σ− −= ⊕ Ω ⋅ ⊕ ⊕Ω ⋅ , 0 i n< < (9)

Here by Ω we denote the relation of order and is defined as follows:

() 0,
, , {0,1,..., 1}

, i j

i j
P P i j n

r i j
≥⎧

Ω = ∈ −⎨ <⎩
 (10)

By r we denote a random value from the set { }0,1 ; this will make iσ depend at
random on any of the keys jσ for all 0,..., 1j i= − .

If the relation of order Ω is known then solving the chained randomly puzzle is
no harder then solving a linearly chained puzzle. Otherwise, if the order in which
the puzzles were chained is unknown the client may still attempt to solve the
puzzle but the number of possible combinations increases exponentially. A
randomly chained puzzle can be used to increase the computational complexity for
solving the puzzles by hiding the order in which the puzzles were constructed,
however, the computational effort to solve the puzzle can be also increased by
increasing the difficulty level of the puzzle and a randomly chained puzzle is not
so usefull.

4 Some Scenarios in which Linearly Chained Puzzles
can be Used

We propose the use of linearly chained puzzles in the following generic setting:
the sever, or its delegate as the bastion from [6], sends a puzzle to each of its
clients; this measure can be taken in order to protect the server against DoS attacks
or for any purpose that requires the estimation of the clients resources. Each client
may decide not to solve the entire puzzle and only some of it and the server will
allocate resources to the client according to the amount of puzzle that was solved.
Finally, this provides a much more flexible interaction between the client and the
server.

The first scenario in which we are interested is the following: a server S will
commit resources to a client ,0i cC i n≤ < according to the client computational
resources. In the beginning all the clients are waiting in a queue, the server starts
by sending a puzzle to each client, and we would like for the server to know after
a particular time interval what is the stage of each client in solving the puzzle.

A first solution will be to send a simple one-way function inversion puzzle
,0i cP i n≤ < from the server to each client. However, when the server wants to

check what is the stage of some client in solving the puzzle this is likely to be
impossible since any client may claim he has searched any amount of keys
without being possible for the server to verify this.

Using a puzzle with pn sub-puzzles may help since the client may report after a
particular time interval the number of puzzles that he solved by sending their
solutions to the server. However, this will result in sending more than one solution
and more than one verification at each step.

A linearly chained puzzle provides an elegant solution to this purpose, since it is
obviously that the server may send a linearly chained puzzle to each client and
each client can report what is his stage in solving the puzzles at any moment by
sending the solution for the last solved puzzle from the chain. All the operations
that the server needs to do is to perform a table look-up in order to check that the
solution provided by the client is correct.

The second scenario in which we are interested is the use of chained puzzles in
order to increase the resistance against denial of services attacks of authentication
protocols based on one-way chains such as the Delayed Message Authentication
Protocol (DeMA protocol) proposed in [4].

Each sessions of the DeMA protocol consists in two rounds as follows:

Session ,1k k η≤ ≤

Round 1 A → B : ()() ()kkMMACM AAkAkA σσ ,1,, ,, +

Round 2 B → A : ()() ()kkMMACM BBkBkB ρρ ,1,, ,, +

The significance of the notations is the following: kAM , denotes the message
from session k , MAC is a message authentication code computed on message

kAM , with the key ()1+kAσ and respectively on ,B kM with the key ()1B kρ + .

The current session keys ()kAσ and ()B kρ are elements from a one-way chain
computed with the following relations:

() () , 0 k
A Ak f x kησ η−= ≤ ≤ (11)

() () , 0 k
B Bk f x kηρ η−= ≤ ≤ (12)

Here f is a one-way function, Ax and Bx are two random values kept secret on
each entitie’s side, η is the maximum number of communication sessions; more
details on the DeMA protocol can be found in [4].

In the case of the DeMA protocol a server may decide to limit the number of
requests from a particular client. Sending packages that contain a chained puzzle
may be efficient and suitable for the DeMA protocol; therefore the package
structure can be the following:

Session ,1k k η≤ ≤

Round 1 A → B : () () ()() (), ,, , , , 1 ,A k k A k k A AM P MAC M P k kσ σ+

Round 2 B → A : () () ()() (), 1 , 1, , , , 1 ,B k k B k k B BM S MAC M S k kρ ρ− − +

In each session the server will send a new chained puzzle to the client, the
authenticity of the puzzle can be checked only in the next session, and then if the
puzzle proves to be authentic the client must solve it. Starting from session 0k >
the server will expect a solution for the previous puzzle from the client. If such a
solution is not received there are two possible reasons for this: a) the message
received by the client was not authentic due to the possible intervention of an
attacker and the client did not solved the puzzle since it was not authentic (in this
case the communication line is corrupt) b) the client did not manage to solve the
puzzle due to its limited computational resources; in either cases the server can
decide to lower its computational resources allocated for the client. Figure 2
suggests the connection between the keys and the puzzles from each session.

()1A kσ −

MAC

()A kσ()1A kσ +

, ,A k kM P
MAC

, 1 1,A k kM P− −

()1B kρ −

MAC

()B kρ()1B kρ +

, 1,B k kM S −

MAC

, 1 2,B k kM S− −

MAC

MAC

, 1 1,A k kM P+ +

, 1,B k kM S+

MAC

MAC

Session k+1 Session k Session k-1

Figure 2

The connection between the keys and the puzzles from each session of the DeMA protocol

Sending a chained puzzle to the client is efficient since the client can solve only
some of the puzzles from the chain and the server can allocate its resources
according to the amount of solved puzzles.

Conclusions

We have proposed and investigate the construction of chained puzzles. Linearly
chained puzzles can be used for providing more flexibility for the client in solving
the puzzle. The generic scenario in which they can be used is in which a client
may choose to solve only some of the puzzles that were sent by the server and
gain resources according to the amount of puzzles that he solved. This solution
may be useful in combating DoS attacks and in any other situation which requires
the allocation of resources from the server according to the client’s computational
resources.

References

[1] Aura, T., Nikander, P., Leiwo, J., DOS-Resistant Authentication with
Client Puzzles, Lecture Notes in Computer Science, 2001

[2] Bellare, M., Goldwasser, S., Verifiable Partial Key Escrow, ACM
Conference on Computer and Communications Security 1997, 1997, pp.
78-91

[3] Dean, D., Using client puzzles to protect TLS. USENIX Security
Symposium 2001; Washington, DC. Berkeley, CA: USENIX Association,
2001

[4] Groza, B., Using one-way chains to provide message authentication
without shared secrets, accepted at IEEE 2nd International Workshop on

Security, Privacy and Trust in Pervasive and Ubiquitous Computing, Lyon,
France, 2006

[5] Juels, A., Brainard, J., Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks. In S. Kent, editor, Proceedings of
NDSS '99 (Networks and Distributed Security Systems), pp. 151-165, 1999

[6] Lakshminarayanan, K., Adkins, D., Perrig, A., Stoica, I., Taming IP Packet
Flooding Attacks, 2nd ACM Workshop on Hot Topics Networks,
Cambridge, MA, Nov. 2003

[7] Rivest L., Shamir, A., Wagner, D. A., Time-lock puzzles and timed-release
Crypto, available at http://theory.lcs.mit.edu/~rivest/publications.html

[8] Waters B., Juels A., Halderman, J. A., Felten, E. W., New Client Puzzle
Outsourcing Techniques for DoS Resistance,
http://citeseer.ist.psu.edu/waters04new.html

