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Abstract: Car body deformation modeling plays a very important role in crash accident 
analyses, as well as in safe car body design. The determination of the energy absorbed by 
the deformation and the corresponding Energy Equivalent Speed can be of key importance, 
however their precise determination is a very difficult task. Although, using the results of 
crash tests, intelligent and soft methods offer an automatic way to model the crash process 
itself, as well as to determine the absorbed energy, the before-crash speed of the car, etc. In 
this paper a modeling technique and an intelligent expert system are introduced which 
together are able to follow the deformation process of car bodies in car crashes and to 



analyze the strength of the different parts without any human intervention thus significantly 
can contribute to the improvement of the modeling, (automatic) design, and safety of car 
bodies. 
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1 Introduction 

Crash and catastrophe analysis has been a rather seldom discussed field of 
traditional engineering in the past. In recent time, both the research and theoretical 
analysis became the part of the everyday planning work [1] [2] [3]. The most 
interesting point in crash analysis is that even though the crash situations are 
random probability variables, the deterministic view plays an important role in 
them. The stochastic view, statistical analysis, and frequency testing all concern 
past accidents. Crash situations, which occur the most frequently (e.g. the 
characteristic features of the crash partner, the direction of the impact, the before-
crash speed, etc.) are chosen from these statistics and are used as initial parameters 
of crash tests. These tests are quite expensive, thus only some hundred tests per 
factory are realized annually, which is not a sufficient amount for accident safety. 
For the construction of optimal car-body structures, more crash-tests were needed. 
Therefore, real-life tests are supplemented by computer-based simulations which 
increases the number of analyzed cases to 1-2 thousands. The computer-based 
simulations – like the tests – are limited to precisely defined deterministic cases. 
The statistics are used for the strategy planning of the analysis. The above 
mentioned example clearly shows that the stochastic view doesn't exclude the 
deterministic methods [4] [5]. 

Crash analysis is very helpful for experts of road vehicle accidents, as well, since 
their work requires simulations and data, which are as close to the reality as 
possible. By developing the applied methods and algorithms we can make the 
simulations more precise and so contribute towards the determination of the 
factors causing the accident. 

Through the analysis of traffic accidents we can obtain information concerning the 
vehicle which can be of help in modifying the structure/parameters to improve its 
future safety. The energy absorbed by the deformed car body is one of the most 
important factors effecting the accidents thus it plays a very important role in car 
crash tests and accident analysis. There is an ever-increasing need for more correct 
techniques, which need less computational time and can more widely be used. 
Thus, new modeling and calculating methods are highly welcome in deformation 
analysis. The method of the finite elements can be usefully used for simulating the 



deformation process, but this kind of simulation requires very detailed knowledge 
about the parameters and energy absorbing properties. 

To summarize in general terms how the finite element method works we list main 
steps of the finite element solution procedure below. 

1 Discretize the continuum. The first step is to divide a solution region into 
finite elements. The finite element mesh is typically generated by a 
preprocessor program. The description of mesh consists of several arrays 
main of which are nodal coordinates and element connectivities. 

2 Select interpolation functions. Interpolation functions are used to interpolate 
the field variables over the element. Often, polynomials are selected as 
interpolation functions. The degree of the polynomial depends on the 
number of nodes assigned to the element. 

3 Find the element properties. The matrix equation for the finite element 
should be established which relates the nodal values of the unknown 
function to other parameters. For this task different approaches can be used. 

4 Assemble the element equations. To find the global equation system for the 
whole solution region we must assemble all the element equations. In other 
words we must combine local element equations for all elements used for 
discretization. Element connectivities are used for the assembly process. 
Before solution, boundary conditions (which are not accounted in element 
equations) should be imposed. 

However the method of finite elements yields accurate results the high 
complexity, computational cost and time can be very height. The main aim of our 
experiment is to develop such methods, which are able to simulate the 
deformation process more quickly as the recently used ones. For this purpose 
rough estimated parameters are used which enable to decrease the complexity and 
the computational cost. 

2 The Basic Idea 

The most important thing which we have to know by a detailed analysis of the car 
body from the point of view of its deformation energy absorbing properties, is the 
inside structure of the car body. In most of the cases such detailed data about the 
car-body structure are not available, therefore it is proposed to approximate them 
from known discrete data. 

The introduced method is starting from the so called energy cells. These energy 
cells are got by discretization of the car-body, to each of which a value for 
describing its energy absorbing properties is assigned. Other characteristic of these 



cells is, that each of them can absorb and pass energy, which depends on the 
amount of the absorbed energy, e.g. as the stiffness property of a cell is changing 
during the deformation process proportionately to the absorbed energy. As higher 
the stiffness of the cells is, as more amount of energy is necessary to achieve the 
same rate of deformation. The energy passed trough the cell is proportional to its 
stiffness. 

Taking into consideration the mentioned properties of the cell, relations can be 
defined between them, e.g. lets have two cells, one with higher and one with lower 
stiffness property. In this case the order of deformation will be the following: the 
cell with lower stiffness will be deformed in a higher degree as the second one, 
which has the higher stiffness. For describing the energy passing and absorbing 
property of a cell in function of the input energy we have chosen a mapping based 
on the so-called sigmoid function. These functions describe the rate of the 
absorbed and input energy ( )(xfa ), and the rate of the passed and the input 

energy( )(xf p ). For every cell should be satisfied the following criteria: the sum 

of the absorbed and the passed energy by the cell is equal to the input. Here the 
input stands for the energy transmitted to the cell. If the input energy for a certain 

cell is 0E , then the absorbed energy by this cell is dxxf
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The parameter k solves for describing the speed of transition between the almost 
whole absorption and the almost whole passing. The parameter 0x  describes the 

stiffness of the cell (as greater the value 0x  is as higher the stiffness). 

Besides the absorbing and passing properties a new function is needed for 
describing the volumetric change as the function of the absorbed energy ( )(xVc ). 
This could be similar to the absorbing function, because for smaller absorbed 
energy the volumetric change is almost linear, but in higher energy domain more 
energy is needed to achieve the same rate of change. 
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where 0V  denotes the volume of the cell before absorbing energy aE , 

additionally vk  and vx  must satisfy the following criteria: 

v

k

v k
ex

v )1ln( −
< . 

Then the new volume of the cell is the following: 
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Figure 1 

Absorbing and passing functions 

 
Figure 2 

Volumetric change 



3 Modeling with Tensors 

After discretizing the car body, two functions could be assigned to a certain cell: 
one for determining the amount of energy could be absorbed from the input 
energy by the cell, and the other for determining the amount of the passed energy. 
Besides these, additional functions could be assigned to a cell, because the impact 
(input energy) from different directions cause different type of deformations. For 
example a cell is easy to deform in a certain direction, but very difficult in an 
orthogonal direction. A simple idea choosing three different absorbing functions 
for a certain cell according to the three different directions used in Cartesian 
coordinate system, and input energy form an arbitrary directions could be 
decomposed into orthogonal components. 

An arbitrary cell absorbs a certain rate of the input energy, and passes the remains 
to the neighbours (a cell could have neighbours up to six) in different rates. So 
these weighted connections between cells could form another tensor. Finally, if 
one would like to discribe the real deformation process, the Cartesian coordinates 
of the cells form a tensor, too. 

For instance, let have a discretized car-body (or anything else), and a frontal 
impact as input energy. We can determine the deformation process as follows: in a 
very simple case, we ignore forces between cells in the same level. We consider 
the input energy as coming in energy packages (quantums). In the first step (the 
first energy package) we determine the absorbed and the passed energy in he first 
level. In the next step (second energy package) we determine the the absorbed and 
the passed energy in the second level caused by the first step, and the absorbed 
and the passed energy in the first level caused by the second step, and so on (see 
Fig. 3). 

 

 

 

 

 

 

 

Figure 3 
Illustrating the certain “energy” levels 
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Conclusions 

This paper introduces a new concept for simulating the deformation of the car-
body energy cells. For describing the energy absorbing and passing properties of 
the cells of the car-body new functions were introduced. Using these functions the 
volumetric change of the cells can be also simulated. In our future work we would 
like to describe the motion of the cells if a deformation occurs. 
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