
Using Fuzzy Logic for the Specification and
Retrieval of Software Components

Ioana Şora, Doru Todinca
Universitatea Politehnica Timişoara, Departamentul de Calculatoare, Timisoara,
Romania. E-mail:{ioana.sora, doru.todinca}@ac.upt.ro

Abstract: In the component based software engineering approach, a software system is
viewed as an assembly of reusable independently developed components. In order to
produce automated tools to support the selection and assembly of components, rigorous
specifications of components and performant retrieval and selection strategies based on
these specifications are needed. In this article we propose a fuzzy logic based solution for
the specification and retrieval of components.

Keywords: fuzzy logic, software components

1 Introduction

In the component based software engineering approach [1],[11], a software system
is viewed as an assembly of reusable independently developed components. The
set of components and the manner in which these are connected with each other
determines the properties (functionality and behaviour) of the assembled system.

Constructing a system with certain required properties starts with the
compositional decision: which components to select from a large repository of
components and which topology to give to their assembly? During this decisional
process, the selection is made based on the matching between the required
properties and the known properties of the components. In order to use automatic
tool support, a systematic compositional model is needed. Such a compositional
model must comprise a component specification scheme and formalism, and a
coordinated, well defined requirements driven composition strategy. It must have
the expresiveness to describe many types of requirements and properties
(functional, non-functional, structural, behavioural), it must be sufficiently formal
to be used in automatic tools and still its complexity should permit reasonable
implementation.

Many different approaches have been proposed for the specification of
components: interface description, formal specification methods, behavioural

specification, architectural description. In previous work, we also developed a
compositional model at the architectural level, the composable components model
and its specification formalism, CCDL [8], [10]. A critical issue are the non-
functional properties of components, as speed, memory consumption, usability,
etc. These are difficult to specify and match [3], most often the matching of a set
of such requirements is based on a series of trade-offs. This work proposes a
solution by applying fuzzy logic in this field of software engineering.

The remainder of this article is organized as follows: Section 2 resumes the basic
concepts of our component model, CCDL. Section 3 presents the extension of
CCDL with fuzzy attributes and fuzzy logic based selection of components. The
last section summarizes the concluding remarks.

2 Core CCDL Component Model

This section resumes the basic concepts of our component model. Only these
aspects of the complex composable components model (CCDL) that are dirrectly
affected by the extension proposed in this work are presented here, many details
beeing omitted. The CCDL model has been extensively presented in [8] and [10].

2.1 Principles Used in the Specification of Components

A software system is viewed as a set of components that are connected to each
other through connectors. As defined in mainstream component bibliography
[11],[1] a software component is an implementation of some functionality,
available under the condition of a certain contract, independently deployable and
subject to composition.

In our approach, each component has a set of ports as logical points of interaction
with its environment. We distinguish between input ports and output ports and
consider that syntactically every input port is plug-compatible with every output
port. The logic of a component composition (the semantic part) is enforced
through the checking of component contracts.

Components may be simple or composed. A simple component is the basic unit of
composition that is responsible for certain behaviour and has one input port and
one output port. Composed components introduce a grouping mechanism to create
higher abstractions and may have several input and output ports.

Components are specified by means of their provided and required properties.
Properties in our approach are facts known about the component, in a way similar
to Shaw’s credentials [7]. A property is a name from a domain vocabulary set and
may have refining subproperties (which are also properties) or refining attributes

that are typed values. For example, a property that does data compression will be
described through a property named compression. An attribute of this property can
be defined as the average compression rate, expressed as the real type attribute
compression-factor.

The component contracts specify the services provided by the component and
their characteristics on one side and the obligations of client and environment
components on the other side. Most often the provided services and their quality
depends on the services offered by other parties, being subject to a contract. In the
CCDL model contracts are expressed as provides and requires clauses containing
sets of provided and required properties. The component as a whole provides
certain services, defined by global provides clauses in the component
specification. In order to provide these services it requires that other services are
provided by the environment. These services must be provided in certain defined
interaction points, thus the requires clauses are attached to the ports.

2.2 Automatic Requirements-driven Selection and
Composition

A component assembly is valid if it provides all user required services and if the
contracts of all individual components are respected. A contract for a component
is respected if all its required properties have found a match. The criterion for a
semantically correct component assembly is matching all required properties with
provided properties on every flow in the system.

A match between a required and a provided property is established first by
matching the properties names, then recursively matching subproperties and
matching of the attributes values. A property present in the requirement must not
specify all attributes of the property present in the provides clause for a match.

In our approach, it is not necessary that a requirement of a component is matched
by a component dirrectly connected to it. It is sufficient that requirements are
matched by some components that are present on the flow connected to that port,
these requirements are able to propagate.

The internal structure of a composable target can be established at runtime through
automatic requirements-driven composition. The requirements for the composable
target result from its invariant structural constraints and from the current
requirements imposed by the external environment. The overall process of
generating the structure of the target is driven by the requirements. The required
properties for the target are put on the main flow of the target and propagated from
that point on, while adding components. The addition of new components on the
flow occurs according to the current requirements, which are those propagated
from the initial requirements together with those of the new introduced
components. A component is added to the solution if it matches at least a subset of

the current requirements. A solution is considered complete when the current
requirements set becomes empty. It is possible that for a certain set of
requirements no solution can be found or that several component assemblies are
found.

The mechanism of propagation of requirements briefly resumed here was formally
described in [9], paper that also gives a complete description of the automatic
composition strategy.

2.3 Issues

The compositional model presented above can be improved in regard with the
specification and matching of properties and attributes.

In the core CCDL model, a property most often consists of a name describing
functionality and attributes that are typed values describing the non-functional
characteristics of the functional property.

For example, a component providing data compression can be characterized by a
property named compression. The non-functional characteristics are described
by attributes like compression_rate, speed, memory_consumption. For the
specification of the component, these attributes must be first evaluated. The
compression_rate can be expressed as a real type value, representing the
average measured compression rate for different data inputs. Not all attributes can
be as easily evaluated and described as crisp values. The exact value of the speed
attribute depends essentially on the hardware configuration of the system. Such an
attribute should be more adequately be described using terms as “fast”, “very
fast”, “slow”, description established as a result of comparing the performance of
the current component relative to the performance of other components that
provide the same functional property.

In the core CCDL model, a match between a required and a provided property is
established first by matching the properties names, then recursively matching
subproperties and matching of the attributes values. Let consider components C1
and C2. C1 provides property P with the attributes A1=Value1, A2=Value2. C2
provides the same property P with the attributes A1=Value3, A2=Value4. A client
requirement can be for property P with attributes A1=ValueX, A2=ValueY. Then
either C1 or C2 will be selected, whether ValueX=Value1 and ValueY=Value2 is
true or ValueX=Value3 and ValueY=Value4. If the values do not match exactly,
no component will be selected.

In many cases, a client requirement has no precise requirements regarding the
values of attributes. For example, a requirement regarding the selection of a
compression component will rarely need to specify an exact value for the
compression_rate as to require, i.e., compression_rate=0.4. It will rather
specify that compression_rate=medium is acceptable.

In order to relax the specification of requirements, in the strict matching
mechanism of the core CCDL it is still possible that a property present in the
requirement does not have to specify all attributes of the property present in the
provides clause for a match. In the previous example of components C1 and C2, a
client requirement can omit the specification of required values for all or some of
the attributes of property P. For example, a requirement as property P with
attribute A2=ValueX will select all components that provide property P with
attribute A2 matching the ValueX, regardless of the values of the attribute A1.
This possibility of uncomplete requirement specification is not enough to give the
desired flexibility. It misses the possibility to specify required ranges, as well as
the possibility of doing tradeoffs between the matching degree of several attributes
of the same property.

From the examples presented above, we conclude that there are two main issues
with the specification and matching of properties:

• certain attributes cannot be exactly evaluated and specified

• the matching of required/provided attributes must not always be precise

We believe that fuzzy logic [13] can help to overcome these problems because it
aims at exploiting the tolerance for imprecision and uncertainity. The next chapter
proposes our fuzzy based solution.

3 Fuzzy Attributes and Selection

In this article, we propose an extension of the core CCDL model, where attributes
can be expressed in fuzzy logic and the properties matching is done by fuzzy
inference.

3.1 Fuzzy Attributes

A property consists of a name describing functionality and attributes that are either
typed values (crisp) or fuzzy terms.

For example, the property compression can be defined with attributes that are
both crisp and fuzzy. The atributes compression_rate and
memory_consumption are crisp values, the attribute speed is a fuzzy value as it
depends on the hardware configuration and performance of the system:

Property compression with attributes

 compression_rate =crisp(0.6)

 memory_consumption=crisp(512)

 speed=fuzzy(low)

The names used for the properties and for the attributes are established through a
domain-specific vocabulary. Such a restriction is necessary because a totally free-
text specification makes the retrieval difficult, producing false-positive or false-
negative matchings due to the use of a non-standard terminology. Establishing
domain specific vocabularies is a common solution [6], [5] and has been used also
in the core CCDL model [8].

In this work, the domain specific vocabulary must also describe the domains of
the fuzzy attributes (linguistic variables) for each property as well as the
membership functions for the fuzzy terms. For example:

domain(compression_rate) = {low, medium, high}

domain(memory_consumption) = {low, medium, high}

domain(speed) = {slow, medium, fast}

The membership functions for all linguistic variable are considered of
trapezoidal/triangular shape as in figure1:

0 a1 a2 a3 m

μ

domain

Term1 Term_n
1

a_n

Term2

…

Figure 1

The shape of the membership functions

For each linguistic variable, first the number and the names of the terms of its
domain must be declared, and after that the values of the parameters a1, a2, …,
a_n must be specified. For example, in case of the attribute compression_rate,
these values are defined as a1=0.3, a2=0.6, a3=0.75.

It is important to note that a linguistic variable that characterizes an attribute can
have different meanings in the context of different properties. The domain and the
shape of a linguistic variable can be redefined in the context of different
properties. For example, the attribute memory_consumption can be attached to
very different functional properties: a compression component, a sorting
component, a signal processing component, etc. In each of these cases, there are
different expectations about the amount of memory needed: an amount of memory
that is considered normal (medium) for signal processing is considered very high
if it is required by a compression component. Thus the values a1, a2, a3 and
maybe also the number of the linguistic terms will be defined different in the
context of every property.

3.2 Generation of Fuzzy Rules from Requirements

3.2.1 Principle of Fuzzy Rule Generation

A new property matching mechanism is defined.

In general, a requirement as:

Req property P with attributes A1=V1 and A2=V2 and … An=Vn

is handled in the following manner:

First, the basic functionality is ensured, matching properties names according to
the classical composition strategy. Usually several solutions result from thist first
step.

Second, the preliminary solutions are selected and hierarchized according to the
degree of attribute matching. This is done by fuzzy logic. The given requirement
is translated into the corresponding rule:

If A1=V1 and A2=V2 and … An=Vn then decision=select

The generation of the fuzzy rules is done automatically starting from the
requirements.

Very often, the required attributes are not values, but rather are required to be at
least (or at most) a given value, A>=V or A<=V. For example, the speed is
usually not required to be medium, but at least medium.

In general, a requirement containing the attribute expression A>=V will be
translated into a set of i rules, for all Vi>=V:

 If A=Vi then decision=select

3.2.2 Automatic Extension of the Fuzzy Rules Set

Several rules are generated from one requirement. In order to relax the selection, it
is considered a match even if one of the linguistic variables in the premises
matches only a neighbor of the requested value (the predecessor or the succesor).
In this case the decision of selection is a weak one. In the case that more than one
linguistic variable in the premise matches only neighbor values (while the rest
match the requested fuzzy terms), the decision is a weak reject. In the extreme
case that all linguistic variables in the premises match neighbor values, the
decision is a weak reject. In all the other cases, the decision is a strong reject.

For example, in the case of a requirement containing two attributes, A1=V1 and
A2=V2, the complete set of generated rules is:

The dirrectly generated rule is:

If A1=V1 and A2=V2 then decision=strong_select

The rules generated if one of the linguistic variables in the premises matches only
a neighbor of the requested value are (maximum 4 rules):

If A1=pred(V1) and A2=V2 then decision=weak_select

If A1=succ(V1) and A2=V2 then decision=weak_select

If A1=V1 and A2=pred(V2) then decision=weak_select

If A1=V1 and A2=succ(V2) then decision=weak_select

In this case there are a maximum number of four generated rules, if neither V1 nor
V2 are extreme values of their domains. If a value is the first value in the domain
it has no predecessor, if it is the last value in the domain it has no successor.

The rules generated if more then one of the linguistic variables in the premises
matches only a neighbor of the requested value are (maximum 4 rules):

If A1=pred(V1) and A2=pred(V2) then decision=weak_rej

If A1=succ(V1) and A2=pred(V2) then decision=weak_rej

If A1=pred(V1) and A2=succ(V2) then decision=weak_rej

If A1=succ(V1) and A2=succ(V2) then decision=weak_rej

For all the rest of possible combinations of values of A1 and A2 the decision is
strong reject. The number of rules from this category depends on the number of
terms of the linguistic variables A1 and A2.

3.2.3 Specifying the Relative Importance of Attributes

In order to allow the user to specify which attributes are more important and to
treat them accordingly, different weights can be declared in the requirement
specification. These weights describe how strict is a certain requirement: very
strict, strict, normal, or less.

A requirement will be expressed for example in the following manner:

Req property P with attributes

 A1=V1/imp=strict and A2=V2/imp=normal and … An=Vn/imp=less

The process of automatic generation of the extended set of fuzzy rules, presented
in the previous paragraph considering the case when all attributes have normal
importance, is adapted to deal with the attributes of different importance.

The attributes of strict importance will never be replaced by neighbor values in the
generated fuzzy rules. The attributes of less importance will be replaced by
neighbor and also second neighbor values in the generated rules.

3.3 Using Fuzzy Inference for Component Selection

The selection of components corresponding to a set of requirements is done in
several steps: First, the matching of properties according to the classic
composition strategy resumed in paragraph 2.2 results in a list of potential
solutions. Second, all the required attributes are used to generate the set of fuzzy
rules as described in paragraph 3.2. Finally, the potential solutions obtained in the
first step are hierarchized with help of fuzzy inference over the set of rules.

Given a fact A’ and a rule RA→B, fuzzy inference means the composition A’○
RA→B in order to obtain the conclusion B’= A’○ RA→B.

In our case, a fact A’ is an expressions containing attributes of one candidate
solution combined using logical operators, the premises A of the fuzzy rules are
composed of attributes of the requirement, while the conclusion is the linguistic
variable decision.

The premises of the rules are composed of several attributes, the degrees of
activation of each premise are combined using the corresponding logical operators
(AND, OR). The AND operator is implemented by minimum in fuzzy logic and
the OR operator is implemented by maximum in fuzzy logic.

When more than one rule is active, the consequents of all active rules are
combined through the union operator, which is implemented as a maximum
between the membership functions of the partial conclusions. Most often, the
result of the fuzzy inference has to be a crisp value, obtained by an averaging
procedure applied on the partial conclusions, process that is called defuzzification.
A widely used defuzzification method is the center of gravity.

The results obtained through defuzzification of the conclusions obtained for each
candidate solution lead to their hierarchisation.

Conclusions

In this article we introduced a new approach for the specification and retrieval of
software components. This solution is based on fuzzy logic and extends our previous
work on architectural level specification. The advantages of this approach are: a
natural treatment for certain non-functional attributes that cannot be exactly
evaluated and specified, and a relaxed matching of required/provided attributes
that don’t have to always be precise.

References

[1] Felix Bachman, Len Bass, C Buhman, S Comella-Dorda, F Long, J Robert,
R Seacord, Kurt Wallnau: Technical concepts of component-based
software engineering, Technical Report CMU/SEI-2000-TR-008,
Carneggie Mellon Software Engineering Institute, 2000

[2] Kendra Cooper, Joao Cangusu, Rong Lin, Ganesan Sankaranarayanan,
Ragouramane Soundararadjane, Eric Wong: An Empirical Study on the
Specification and Selection of Components Using Fuzzy Logic, in
Proceedings of …, place and date of edition, pp.

[3] Xavier Franch: Systematic formulation of non-functional characteristics of
software, in Proceedings of the 3rd IEEE International Conference on
Requirements Engineering, Colorado Springs, USA, April 1998, pp.174-
181

[4] Murat Koyuncu, Adnan Yazici: A Fuzzy Knowledge-Based System for
Intelligent Retrieval, in IEEE Transactions on Fuzzy Systems, Vol. 13, No.
3, June 2005, pp. 317-330

[5] Hadef Mili, Estelle Ah-Ki, Robert Godin, Hamid Mcheick: An experiment
in software component retrieval, in Information and Software Technology,
Elsevier

[6] The Object Management Group: Catalog of Domain Specifications.
http://www.omg.org/technology/documents/domain_spec_catalog.htm

[7] Mary Shaw: Truth vs knowledge – the difference between what a
component does and what we know it does, in Proceedings of the 8th
International Workshop on Software Specification and Design, pp. 181-185

[8] Ioana Sora, Pierre Verbaeten, Yolande Berbers: A Description Language
for Composable Components, in Fundamental Approaches to Software
Engineering, Lecture Notes in Computer Science LNCS No. 2621,
Springer, 2003, pp. 22-37

[9] Ioana Sora, Vladimir Cretu, Pierre Verbaeten, Yolande Berbers:
Automating decisions in component composition based on propagation of
requirements, in Fundamental Approaches to Software Engineering,
Lecture Notes in Computer Science LNCS No. 2984, Springer, 2004, pp.
374-388

[10] Ioana Sora, Vladimir Cretu, Pierre Verbaeten, Yolande Berbers: Managing
Variability of Self-customizable Systems through Composable
Components, in Software Process Improvement and Practice, Vol. 10, No.
1, Addison Wesley, January 2005

[11] Clemens Szyperski: Component Software: Beyond Object Oriented
Programming, Addison Wesley, 2002

[12] Ting Zhang, Luca Benini, Giovanni De Micheli: Component Selection and
Matching for IP-Based Design, in Proceedings of Conference on Design,
Automation and Test in Europe (DATE), Munich, Germany, 2001, pp. 40-
46

[13] H.-J. Zimmermann, “Fuzzy sets theory – and its applications. Second,
revised edition”, Kluwer Academic Publishers, 1991

