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Abstract: The robust servo control of a model-based biomedical application, namely the 
glucose-insulin control of diabetes patients under intensive care, is presented in the paper. 
The synthesis and analysis is based on a modified two compartment Bergman model and 
realized with a two degree of freedom controller structure permitting to assure insulin 
tracking. The augmented Δ − P − K structure is described with the necessary weighting 
functions. A non-conservative complex μ-synthesis method is applied. Using the controller, 
not only the robust stability is met under multiplicative uncertainty, but also the nominal 
performance i.e. the disturbance rejection is fulfilled. Food (sugar) intake is considered as 
disturbance. Closed loop simulation results are edged for optimizing the insulin amount. 
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1 Introduction 

Nowadays health experts refer to diabetes mellitus as the disease of the future. The 
newest statistics of the World Health Organization (WHO) shows that 4% of the 
adult society of the world suffers from diabetes mellitus, and this value could 
increase to 5,4% by the year 2025. From engineering point of view, the treatment 
of diabetes mellitus can be represented by an outer control loop, to replace the 
partially or totally deficient blood-glucose-control system of the human body. 

The maintenance of the glucose level in a diabetic patient under intensive care is 
currently an actively researched topic in the field of Biomedical Engineering. Van 
den Berghe have shown, [1], that tight glucose control can reduce the Intensive 
Care Unit (ICU) patient mortality by 45% if the glucose level is kept less than 6.1 



mmol/l for a cardiac care population. It was shown, the automated control 
algorithms, capable to tight regulation of glucose intolerant ICU patients, would 
reduce mortality, as well the current burden on ICU medical resources and time. 

To design an appropriate control, an adequate model is necessary. In the last 50 
years, a variety of models for the interaction between glucose and insulin have 
been suggested such as [2], [3], [4], [5], [6] and strategies have been designed and 
applied to the problem by [7], [8], [9], [10], [11], [12], [13]. 

However, the simplest model proved to be the minimal model of Bergman, [2], 
but its shortcoming is its big sensitive to variance in the parameters. 
Henceforward, the plasma insulin concentration must be known as a function of 
time. Therefore, extensions of this minimal model have been proposed by [3], 
[14], [15], [16], trying to capture the changes in patient dynamics of the glucose-
insulin interaction, particularly in respect to insulin sensitivity. 

The authors have been focused on the optimization of the amount of insulin under 
exogenous disturbance and mismatch. A modified version of Bergman's minimal 
model [10], [17], was used and it was tried to take parameter variance into account 
by robust control strategies applying complex parameter uncertainty. In the 
literature the H∞ control proposed by [18] and H2/H∞ control, [19], has been 
already elaborated. The paper proposes the complex μ-synthesis in order to 
restructure the uncertainties for robustness and performance purposes. 

Therefore, the paper is structured to give firstly a brief description of the model 
and the control strategy used and then it presents the simulation results made for 
the non-linear system with the linear controller in case of food (sugar) intake and 
comparing them with previous results. 

2 Minimal Model-based Human Glucose-insulin 
System 

To simulate the insulin-glucose interaction in human body the following two-
compartment model was employed: 
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where the parameters have been identified, [20]: 
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The terms h(t) and i(t) are the exogenous glucose [g/100ml] and insulin inlets 
[μU/ml], x1(t) and x2(t) stand for the concentration of glucose in the plasma and for 
the concentration of the insulin remote from plasma. In our case x1(t) and x2(t) 
represent both the states and the output of the system, as the dynamical 
performances of the measurement and actuator devices are considerably faster 
than the system itself. 

This modified, minimal model has been set for Type I diabetes patients under 
intensive care. The identified parameters cover only a relatively small part of these 
patients, so the previously designed controllers were true only for this set without 
the robustness of the controller. However, the obtained results, [10], [19], [21] 
encouraged the authors to extend the model with the use of robust controller. 
Therefore, robust techniques give the possibility to wider the parameter interval by 
supposing uncertain system. 

Firstly, the nonlinear system was linearized in the vicinity of steady state, [21]. 
The obtained linear model is: 
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where x(t) represents the state, u(t) and y(t) are the input and output relative 
variables. The linear system proved to be fully controllable and observable. 

3 Robust Servo Control Design Using Complex μ 
Synthesis 

In this section, the applied control theory is briefly summarized, in respect to the 
explanation of weights and structures. The nonlinear plant, described in the 
previous section could be linearized at an equilibrium point in order to create a 
nominal plant to linear μ synthesis. Both the linear and the nonlinear description 
suppose to have two inputs. One of them is the control input, the other is assumed 
to be disturbance for instant. The control input is the insulin inlet, the measured 
quantities are the insulin and glucose concentrations. The aim of the robust control 
under model mismatch is the disturbance rejection on insulin, the tracking of a 
predefined insulin reference, if needed. During the synthesis, one takes the input 
saturation into account, and the controller will be applied to the nonlinear plant 
with noise corrupted measurements. The robust two degree of freedom controller 
is realized by μ synthesis. 
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Figure 1 

Augmented closed loop interconnection 

Linear H∞, respectively μ control syntheses are promising methods on the palette 
of the robust control systems. These postmodern techniques date back to around 
two decades [22]. Progressively it gains ground by the more and more powerful 
computational soft- and hardware, [23], [24]. One of the biggest advantages of 
these methodologies (beyond the well defined mathematical backgrounds) might 
be the robustness itself. Robustness against model mismatches, against 
disturbances. For robust control synthesis, let us consider the augmented system 
drawn in the Figure 1. 

Consider the closed-loop system which includes the feedback structure of the 
model Gn and controller K, and elements associated with the uncertainty models 
and performance objectives. In the diagram, r is the reference, u is the control 
input, y is the output, n is the measurement noise, and ze is the deviation of the 
output from the required one. The structure of the controller K may be partitioned 
into two parts: K = [Kr Ky], where Ky is the feedback part of the controller and Kr 
is the pre-filter part. 

Model based control systems use the mathematical abstraction of the actual plant 
to be controlled. However, vast identification techniques can be found in the 
literature, perfect fitting of the model-real plant does not exist. Therefore, the 
model (or nominal plant) always contains neglected dynamics of the real world. 
The nominal plant is usually a lower order system than the real plant, because 
highly complicated components are rather than modeled. 

One widespread approach of describing uncertainties is the unstructured 
formulation. Even if the precise uncertainty dynamics is unknown, usually an 
upper bound could be defined in frequency domain in order to characterize the 
mismatch. Complex uncertainties, neglected dynamics, respectively their 
(frequency depending) bounds could be classified into several groups. Two major 
types (not counting the more complicated structures) of complex uncertainty could 
be distinguished; the additive and the multiplicative blocks (at the plant output or 



input for MIMO systems). The choice of the unmodeled dynamics is predestined 
by the engineer and by the application, since it hangs on the modelling aspects. 
Nevertheless, the choice is always to involve a certain amount of a priori 
information. 

In our case, the input multiplicative uncertainty is preferred, because it specifies 
the digression, the frequency depending difference (in percentage) between the 
nominal and the actual plant. The formal definition of the multiplicative 
uncertainty is given by: 
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At each frequency, |Wm(iω)| represents the percentage of the difference between 
all of the plants represented by M(Gn,, Wm) and the nominal plant model Gn. In 
that sense, M(Gn,, Wm) represents a set of possible plants, centered at Gn. On a 
Nyquist plot, at a given frequency ωs it can be thought as a disk of radius 
|Wm(iωs)Gn(iωs)|, centered at Gn(iωs). On the other hand, the complex-valued 
(sometimes vector) Δm is assumed to be stable and unknown with a H∞ norm 
lower or equal to 1. 

The linearized model in question said to be good fidelity up to 0.71 − 1 rad/min, 
but it degrades rapidly at higher frequency than 1 rad/min due to neglected 
nonlinear dynamics, cross channel coupling errors, actuator modeling error etc. 
These types of uncertainties will be modeled by complex valued, unstructured and 
input multiplicative representation. The multiplicative form is chosen for 
convenience because it permits the intuitive interpretation of the magnitudes of 
uncertainty in terms of relative error percentage. 

The weighting function We chosen for tracking errors can be thought as penalty 
function. We should be large in frequency range where small errors are desired and 
small where larger errors can be tolerated. Advisedly, the choice of the weights 
can be performed. To achieve perfect tracking (i.e. integral action) We weights 
should be large at very low frequency to imitate integrator. At the same time, good 
tracking property and nominal model validity can be treated as a trade-off. 
Uncertain model can not be forced to assure nominal performance requirements. 

Tid is the model matching function which generally is an ideal transfer function of 
the plant. It has been selected on the fact to react quickly on glucose disturbance. 
The control input is limited and can be (norm) saturated using performance criteria 
Wu. Using this weight the designer can penalize larger deflections and thereby 
minimize control activity. The simplest weight on insulin inlet is a constant term 
across the frequency and with a magnitude equal to the inverse of the maximal 
quantity. 

Weighted sensor noises Wn and external disturbances Wd are input weights. 
Therefore, their selection is slightly different from the definition of output scales. 



The role of weights for these signals is basically the opposite of the role of 
weights for output weights discussed so far. Inputs to the weights are signals 
whose frequency responses are flat and unit size. The weights themselves contain 
scale factors and frequency shaping that match the size, units and frequency 
content of the true inputs. Input weights can be either frequency dependent or 
constant. 

Necessary and sufficient conditions for robust stability and robust performance 
can be formulated in terms of the structured singular value denoted as μ, 0. Now, 
the design setup in Figure 1 should be formalized as a standard design problem as 
illustrated in Figure 2. The augmented P-K structure can be created by applying 
the weighting functions given above and the inputs can be written as: 

[ ]Thnrw =~ , [ ]Tue zzz =~  (5) 

By introducing the lower LFT of the (P,K) pair, i.e. M = Fl(P,K), one gets back 
the Δ – M structure (Figure 2). The robustness and performance analysis of the 
augmented plant can be fulfilled by the partition blocks of the M: 
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Assume that Δm is a member of the bounded subset: 

BΔ { ∈Δ= m Δ { } }1<Δσ m  (7) 

where Δ is defined by: 
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where the ith repeated complex scalar block is ri x ri and the jth full block is mj x 
mj. 

 
Figure 2 

Generalized Δ – P - K structure 



Robust stability is equivalent to: 
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The authors restrict the set of perturbation to Δ∈ BΔ  and therefore condition (9) 
might be conservative. A less conservative solution of the problem is to structure 
uncertainties. This is the structured singular value μ. The structured singular value 
can be defined as: 
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unless no Δ∈Δ makes I-MΔ singular, in which case μΔ(M)=0. Thus 1/μΔ(M) is the 
“size” of the smallest perturbation Δ, measured by its maximum singular value, 
which makes det(I-MΔ) = 0. 

From definition of μ, the robust stability can be reformulated as: 
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The main goal of our synthesis is to guarantee robust performance (RP). The 
closed-loop system achieves robust performance if the performance objective is 
met: 
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The aim of the μ synthesis is to minimize the peak value of μΔ(.) of the closed-
loop M for all stabilizing controllers K, [23]. 

4 Example 

In this section the robust servo glucose-insulin controller is designed and applied 
through the model-based diabetic patient system. 

First, the weighting functions are defined and then a two degree of freedom μ 
synthesis demonstrates the necessity of structuring uncertainties. Unlike the 
control synthesis, the closed loop simulation was experimented on nonlinear plant 
given by (1). 

The first step (the control synthesis) is the choice of the input multiplicative 
weight Wm, comprehending the neglected actuator dynamics. At low frequency, 
where the linear model is supposed to be satisfactory, the relative mismatch was 
adjusted to 10%. Moreover, above 1 rad/min it starts to grow up (the cross over 
frequency is about 30 rad/min) and at higher frequency shape the linear model is 
fully uncertain, the weight is over 100%. 



The ideal tracking model Tid from the reference to the insulin measured output is a 
first order lag with T = 120 min time constant (due to Oral Glucose Tolerance Test 
measurements) and unity steady-state gain. 

To assure good tracking performance We was increased at lower frequency up to 
100. Therefore, based on the small gain theorem [24], the permitted tracking error 
in this range is over 0.01 μU/ml. More the weight is decreased in frequency, more 
the tracking slip is larger. 

Uncertain system can not be forced to properly follow the reference signal. A 
slightly damped dynamic input weight is applied to filter the disturbance input, the 
glucose inlet. The cut off frequency of the Wd is around 20 rad/min. 

Usually, measurement noise corrupts the outputs. The general percentage of the 
incorporating noise, by channel, might not be over 2 − 5%. During the design 
process the Wn anticipates 5% measurement noise. The synthesis is high sensitive 
even for a moderated change in the error term of insulin noise. 

The control input, i.e. the insulin inlet was maximized, because one can not use as 
many control energy as desired. The input inverse scale Wu permits to use a 
maximal, normalized and constant control input 38.525 μU/ml, [18]. 

Using the defined weights, the nominal linear plant was augmented and the 
structure is shown in the Figure 1. It can easily understand, by adopting the H∞ 
synthesis method (ex. γ iteration), that the robust performance prescription can not 
be achieved. Note, adequate H∞ control could be found by modifying the weights. 
A less conservative solution might be the μ synthesis by D − K iteration for 
complex uncertainty, [23]. An iteration summary is shown in the Table 1. 
Fortunately, even the third (frequency depending) D-scales assures the robust 
stability, because the computed, scaled μ value is under 1. 

Testing the robust servo controller, a food intake (as a disturbance) was 
considered. The disturbance was simulated as a sugar absorption in the body 
accordingly to our clinical experiments described by: 
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Table 1 
Differences between the H∞ controller and µ-synthesis 

Iteration 1 2 3 
Controller Order 6 12 12 

D-Scale Order 0 6 6 

γ Achieved (H∞) 1.563 1.115 1.018 

Peak value of µ 1.099 1.006 0.997 



Furthermore, the time domain behavior of uncontrolled system for the above 
glucose intake shows that the insulin drops back to 2.2 μU/ml in 50 minutes, 0. 

Figure 3 presents the applied control input (μ controller, without plant 
perturbation). During the different control strategies the glucose output remains 
the same (Figure 4). 

However, in case of insulin, results are very promising (Figure 5) optimizing the 
necessary insulin dosage. Moreover, Figure 5 compares the μ closed-loop control 
under uncertainty (an input multiplicative uncertainty was used), respectively 
without model mismatch. The tracking performance is perturbed when the 
uncertainty is taken into account, since by a simple additive relation it augments 
the control input activity. Results have been simulated in situation without output 
noise, because the noise masks the variation of the insulin output presented in 
Figure 5. 

 
Figure 3 

The necessary control input 

 
Figure 4 

Glucose variation on the output 



 
Figure 5 

μ controller with and without uncertainty 

Conclusions 

Linear robust μ-synthesis design was applied to assure robust performance with 
structuring the uncertainty description of model-based glucose-insulin system. The 
paper exemplifies the robust control design technique for a useful biomedical 
application. 

Diabetes mellitus is a very serious disease and its on-line control is an important 
research topic in nowadays. By the selected model and control algorithm, it could 
give advantage in practical realization. The model and the applied control 
strategies are not implemented yet, but after the necessary further verifications 
they could provide a useful help to control the blood glucose level. 

Future research can be supported on mixed uncertainties. Other class of 
biomedical systems will be examined. 
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