
Robust H∞ Blood – Glucose Control with 
Mathematica 

Levente Kovács1, Béla Paláncz2, Zoltán Benyó1 
1 Department of Control Engineering and Information Technology, Faculty of 
Electrical Engineering and Informatics, Budapest University of Technology and 
Economics, Magyar tudósok krt. 2, H-1117 Budapest, Hungary 
lkovacs@iit.bme.hu 
2 Department of Photogrammetry and Geoinformatics, Faculty of Civil 
Engineering, Budapest University of Technology and Economics 
palancz@epito.bme.hu 

Abstract: A robust control design on frequency domain using Mathematica is presented for 
regularization of glucose level in Type I diabetes persons under intensive care. The method 
originally proposed under Mathematica by Helton and Merino, [1] – now with an improved 
disturbance rejection constraint inequality – is employed, using the three-state minimal 
patient model of [2]. The robustness of the resulted high-order linear controller is 
demonstrated by nonlinear closed loop state-space simulation, in case of standard meal 
disturbances and compared with H∞ design implemented with the mu-toolbox of Matlab. 
The controller designed with model parameters representing the most favorable plant 
dynamics from the point of view of control purposes, can operate properly even in case of 
parameter values of the worst-case scenario. 
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1 Introduction 

Blood-glucose control is one of the most difficult control problems to be solved in 
biomedical engineering. The main reason is that patients are extremely diverse in 
their dynamics and in addition their characteristics are time-varying. The 
investigations of [3] discourage the use of a low complexity control such as PID, 
if high level of performance is desired. To design an optimal, high quality control, 
one needs a relevant model of the process as well as a proper control technique. 
There are several studies in both areas. For example, [4] analyzed the different 
models of glucose-insulin interactions in human body, while [5], [6], [7] studied 
the applications of traditional and modern control techniques for blood-glucose 
regulation. 



However, probably the best way to approach the problem is to consider the system 
model and the applied control technique together, [8] or [9]. Models for diabetic 
systems are imprecise by nature, therefore some research works are concentrated 
on adaptive control techniques using on-line parameter estimation, [10], others 
suggest robust control design as [11]. 

In this study, the authors present a robust control design on frequency domain 
using Mathematica for regularization of glucose level in Type I diabetes persons 
under intensive care. The corresponding Mathematica program package, 
OPTDesign, was originally developed by [1]. 

Here we have slightly improved this technique by suggesting an effective 
disturbance rejection constraint inequality for the disturbance transfer function. 
Our study is based on the minimal patient model of [2]. In order to check the 
quality, especially the robustness of our control, the controller is designed with the 
most favorable model parameter values, but tested with the values representing the 
worst-case scenario in terms of difficulty of the system dynamics for control 
purposes. 

The technique of the computations and closed loop simulations, employing the 
Mathematica Application, Control System Professional Suite, (CSPS) together 
with OPTDesign, have been already demonstrated by [12] for a simple water-level 
control problem. 

2 Model Equations 

Several different models of diabetic systems exist in the literature including, for 
example, the very detailed 21st-order metabolic model of Sorensen, [13]. 
However, to have a system that on one hand, can be readily handled from the 
point of view of control design, but on the other hand represents the biological 
process properly, the authors considered the three-state minimal patient model of 
Bergman, [2]: 
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where the three state variables (as well as outputs) are the plasma glucose 
deviation G(t) (mg/dL), remote compartment insulin utilization X(t) (1/min), and 
plasma insulin deviation Y(t) (mU/dL). The control variable is the exogenous 
insulin infusion rate, i(t) (mU/min), whereas the exogenous glucose infusion rate 
h(t) (mg/dL min) represents the disturbance. 



Other variables represent parameters of system (1). The physiological parameters 
are GB the basal glucose level (mg/dL), YB basal insulin level (mU/dL), VL the 
insulin distribution volume (dL) and p1, p2, p3, p4 represent the model parameters. 
As numerical values the authors worked with the numerical values determined by 
[14]: p1 = 0.028, p2 = 0.025, p3 = 0.00013, p4 = 5/54, GB = 110, YB = 1.5, VL = 120. 

In order to linearize the system, we need its steady-state values: G0 = X0 = Y0 = 0, 
h0 = 0, and for i0: 

16.667VYp  i LB40 ==  (2) 

Loading CSPS of Mathematica the linearized system around the vicinity of the 
steady-state can be calculated as well as our interested transfer function from the 
glucose concentration G(s) to the input vector {h(s) i(s)}: 
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The system proved to be stable, controllable and observable, so we can move to 
the control algorithm. 

3 Concept of the Robust Control Design 

3.1 Performance Requirements 

Considering the complementary sensitivity function of a general closed loop 
system, [15]: 
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where P(s) represents the transfer function of the considered plant, and C(s) the 
transfer function of the controller, the robust control method on frequency domain 
implemented in OPTDesign briefly can be summarized by satisfying the following 
conditions, [1]: 

T must satisfy disk inequality: 

)i(R)i(T)i(K ω≤ω−ω  for ωa ≤ ω ≤ ωb (5) 

where K and R are fixed functions that embody the desired specifications of the 
system. K is called the center of the disk and R is called the radius; 



Defining the gain-phase margin as PCm += 1inf , the constraint should be: 

m
)i(T 11 ≤−ω  for all ω (6) 

The bandwidth of the complementary sensitivity function (T(iω)) should be below 
than 1/√2 or in other words below -3 dB, [15]. 

For the closed-loop roll-off, specifying a given n and αr as well as the roll-off 
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In addition we introduced a new condition for disturbance rejection requirement, 
considering Pd(s) the transfer function of the disturbance and having the 
sensitivity transfer function (1-T(s)), the inequality should be: 
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where c is a constant less than 1. 

These requirements all together can be summarized in the requirement envelope 
presented in Figure 1. 
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Figure 1 

Requirement envelope for robust control design in frequency domain 



In order to insure the control purposes as well as the proper performance of the 
optimized process, the following performance requirements were chosen: c = 0.95; 
αr = 8.7641*10-7; n = 2; ωd = 2.65; ωb = 4; ωr = 6.5; αg = 2.5; αb = 0.9. Results are 
shown in Figure 2. 

3.2 Optimizing Performance Function 

Assuming that T(s) has no right-half plane (RHP) poles (is internally stable), the 
designing problem can be formulated as it follows: 

Given a plant P(s), a set of performance requirements P and a set 
{ }∞∈= RH)s(T I  of rational internally stable transfer functions the task is to 

determine optimal IT ∈   which satisfies P. 

Starting from (5) the performance requirements can be expressed in form of disk 
inequalities, which can be written in the following way: 
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Now, for a given T it can be calculated the largest value of the left-hand side: 
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If T is optimal (T*), it means that )()( * TT γγ ≤  for all IT ∈  and satisfying P. By 
other words this means: 
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Figure 2 

The actual original and smoothed requirements envelopes 



This γ* value is basically the solution of the H∞ suboptimal problem, [15]. This 
value should be in the [0,1] interval to guarantee robust performance. 

 

Running OPTDesign for the requirement envelope shown in Figure 2, the obtained 
result for γ* was 0.3679. This value was also checked with the mu-toolbox of 
Matlab and a very similar result was obtained. The numerical values of the 
optimal T* inside the considered constraining envelope is presented in Figure 3. 
With γ* calculated, we have checked the performance requirements similarly as in 
[12]. 

 

The numerical values of these optimal T* will be approximated with a proper 
rational function, in our with a 20th order one. The local error of this 
approximation can be seen in Figure 4. 

 

Then, applying (3) and (4) we can express the transfer function of the control part, 
C(s). In order to simulate the non-linear closed-loop in time domain we should 
convert C(s) in state-space form. 

 

To reduce the size of the state-space form we use the MinimalRealization 
technique built in CSPS. As a result we have obtained a sixth order LTI model 
(matrix D is zero): 
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Figure 3 

The numerical values of the optimal T* inside the considered constraining envelope 

 

 
Figure 4 

The local error of the rational function approximation of the optimal 20th order T (in 10-4) 



4 Simulating the Nonlinear Closed-Loop Dynamics 
for Blood-Glucose System 

4.1 Non-linear Closed Loop Model Simulation 

Using the parameters given at the beginning of this paper, (2), the performance of 
the control was tested by using a standard meal disturbance with about six hour 
duration, modeled by [16] and given in Figure 5. 

Using the designed controller, the controlled dynamics of the blood glucose and 
insulin infusion are presented in Figure 6 and Figure 7. 
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Figure 5 

Considered exogenous glucose infusion (meal disturbance), by [16] 
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Figure 6 

Controlled dynamics of blood glucose concentration, G(t) 
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Figure 7 

The corresponding insulin infusion rate, i(t) 

4.2 Testing Robustness of the Controller 

The investigations of [3] showed that for limiting case of model parameter p1 = 0, 
the system is unable to regulate the glucose level on its own. Indeed, the 
eigenvalues of the linearized model in case p1 = 0 are {- 0.0925926, - 0.025, 0}, so 
the open loop system is unstable, but controllable. The result of the simulation 
carried out with the same controller, but with nonlinear plant model having the 
value of p1 = 0, shows that the compensator is able to control the system even in 
this case, although the quality of the control is not so good, than it was in case p1 = 
0.028 (Figure 8, Figure 9). 

These results are very similar to those obtained in [3] (in case of the NMPC 
control method, where the best result were obtained, and where the controller was 
originally designed for instable situation, p1 = 0). 
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Figure 8 

The controlled dynamics of blood glucose, G(t) in case of unstable plant, p1 = 0 
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Figure 9 

The corresponding insulin infusion rate, i(t) in case of p1 = 0 

Conclusions 

A practical method has been presented for designing a robust controller to regulate 
glucose-insulin system for Type I diabetic patients under intensive care. 
Employing Mathematica CSPS Application together with the OPTDesign package 
developed by [1], one may define a linear, high order compensator, in relatively 
easy way, which can be tested via nonlinear model simulation. Introducing a 
proper disk inequality constraint for disturbance rejection, this method is proved to 
be effective for providing acceptable control performance, even in case when the 
model parameters have changed and the system became unstable. 

The proposed design procedure can be easily adapted to other problems, where 
uncertainty plays an important role and robustness of the control is undispensable. 
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