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Abstract: The fuzzy flip-flop circuit is the extended version of an ordinary, binary J-K flip-
flop. The truth table of the J-K flip-flop is fuzzified, so that binary NOT, AND, and OR 
operations are extended to fuzzy negation, t-norm, and t-conorm, respectively. Two 
versions of the fundamental characteristic equation of fuzzy flip-flop were introduced in 
[1]. They were called ‘reset type’ and ‘set type’ equations, while both of them were fuzzy 
extensions of the characteristic equation of J-K flip-flop, equivalent in two valued logic but 
different in a fuzzy context. In this paper both versions will be used and compared and after 
reviewing the operations that have been investigated previously various other interesting 
operations will be discussed. Results of the characteristics of these new flip-flops will be 
demonstrated graphically in order to achieve an intuitive overview. 
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1 Introduction 

When Zadeh first introduced fuzzy sets [2] he proposed the following operators 
for set complement, union, and intersection: 

)x(1)x( AA μμ −=  (1) 



[ ])x(),x(max)x( BABA μμμ =∪  (2) 

[ ])x(),x(min)x( BABA μμμ =∩  (3) 

In the very same original paper he mentioned in a footnote, however, that 
alternative definitions for the later two were possible, these alternative definitions 
he called interactive operators: 

)x()x()x()x()x( BABABA μμμμμ −+=∪  (4) 

)x()x()x( BABA μμμ =∩  (5) 

These definitions were later called “algebraic”. For each of the three set 
operations, a large variety of formulas and even different classes of functions 
possessing appropriate axiomatic properties, have subsequently been proposed. 
Despite this variety of fuzzy set operators, however, the original complement, 
union, and intersection still bear particular significance, especially in the practical 
applications. For instance, if the functions within a class are interpreted as 
performing union or intersection operations of various strengths, then the classical 
max union is found to be the strongest of these, and the classical min intersection 
the weakest. 

One of the less deeply explored applications of fuzzy sets and logic is the 
extension of traditional Boolean logic based digital circuitry towards ‘fuzzy 
digital circuits’. Fuzzy gates represent no scientific challenge as they are nothing 
else but physical realizations of the operations themselves, except for more 
complex gates like XOR. It is much more interesting to examine the possibility of 
extension of the elementary sequential circuits, or flip-flops of which the most 
general one is the J-K flip-flop. In the next sections we intend to overview the 
results already available in the literature, including a brief summary of the concept 
of J-K flip-flop and then we give insight into the behavior of the various fuzzy 
flip-flops defined by equivalent Boolean formulations of the binary circuit and by 
applying a multitude of alternative definitions for the operations. 

2 Binary (Boolean) and Fuzzy J-K Flip-Flops 

Flip-flop circuits, especially J-K flip-flops store a single bit of information, are the 
basic components of every synchronous sequential digital circuit. The next state 
Q(t+1) of a J-K flip-flop is characterized as a function of both the present state 
Q(t) and two present inputs J(t) and K(t). (The truth table of a J-K flip-flop can be 
seen in Table 1). In the next, as a simplified notation, J, K and Q are used instead 
of J(t), K(t) and Q(t), respectively. The minterm expression of Q(t+1) is written as 



QJKQKJQKJQKJ)1t(Q +++=+  (6) 

and can be simplified as 

QKQJ)1t(Q +=+  (7) 

which is well-known as the characteristic equation of J-K flip-flops. On the other 
hand, the equivalent maxterm expression can be given by 

)QK)(QJ()1t(Q ++=+  (8) 

 J K Q(t) Q(t+1) 

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Table 1 
Truth table of binary J-K flip-flop 

By extending the above equations of binary J-K flip-flop by substituting binary 
operations with their fuzzy counterparts, i.e. fuzzy negation, t-norm and t-conorm, 
we may change (7) and obtain (9) 

)QK()QJ()1t(QR ∧¬∨¬∧=+ , (9) 

further, in the same way, (8) and obtain (10) 

)QK()QJ()1t(QS ¬∨¬∧∨=+ . (10) 

It is obvious that in fuzzy logic, equation (9) does not always equal equation (10) 
because in fuzzy logic the axiomatic properties are considerably weaker than in 
Boolean logic. 

In the next section we will give an overview of the behavior of reset and set type 
fuzzy flip-flops (F3) where t-norm and co-norm are various important dual fuzzy 
operations and the negation is the standard one defined in (1). 



3 Behavior of F3s Based on Various Fuzzy Operations 

There are many different norms known from the literature which play important 
roles in applications or by their mathematical properties. Only very few have been 
investigated from the point of view of what kind of F3 is generated by deploying 
these various norms in equations (9) and (10), namely the standard, algebraic 
norms and an interesting pair of operations generated from the standard and the 
£ukasiewicz operations, later proposed by Fodor. (For these three types see [1, 3], 
[4, 5] and [6], respectively.) From a practical aspect it is confusing that reset and 
set type F3s sometimes do have very different behavior even though they are both 
supposed to be the extension of the same original binary circuit. Indeed they are 
identical at the border lines, when J and K are 0 or 1, thus these pairs are always 
justifiable generalizations, and nevertheless they are disturbingly non-dual. In 
order to eliminate this break of symmetry a combined reset-set type F3 was 
proposed in [5] by the following definition: 
 

  )QK()QJ( ∧¬∨¬∧  )KJ( ≤  

Q(t+1)= (11) 

  )QK()QJ( ¬∨¬∧∨  )KJ( ≥  

 

This general formula can be applied easily for arbitrary dual norm and co-norm, 
so in the next parts this combined equation will be not considered separately, 
except in the standard and algebraic cases, as illustrations. 

The negation used throughout the whole paper will be the standard negation (1). 

3.1 Standard Fuzzy Flip-Flops 

In this case, equations (7) (reset type fuzzy flip-flop) and (8) (set type fuzzy flip-
flop) can be expressed as 

[ ])Q,K1min(),Q1,Jmin(max)1t(QR −−=+    and (12) 

[ ])Q1,K1max(),Q,Jmax(min)1t(QS −−=+ , (13) 

respectively. 

In order to extend the binary J-K flip-flop symmetrically, the combined standard 
F3 will be like this 

 



  [ ])Q,K1min(),Q1,Jmin(max −−    )KJ( ≤  

Q(t+1)= (14) 

  [ ])Q1,K1max(),Q,Jmax(min −−    )KJ( ≥  

Equation (14) is defined as the fundamental equation of the combined standard 
type fuzzy flip-flop. 

Figure 1 shows the next states of the )1t(QR +  of the standard reset type fuzzy 
flip-flop for various values of J, each diagram presenting the curves for different 
values of Q(t) and K. 

Similarly, the next states )1t(QS +  of the set type flip-flop are shown in Figure 
2. 

In the case of Q(t)=0 and Q(t)=1, the values of the next state Q(t+1) in both types 
are equal. If 0<Q(t)<1, then Q(t+1)of the set type is always of greater or equal 
value than that of the reset type. 

It should be noted that the values Q(t+1) of both types are continuously connected 
at the line segment J=K. 

We should remark that all standard flip-flops are characterized by piecewise linear 
functions with several breakpoints in the projections, consequently break lines in 
the three dimensional graph. Calculation with standard operations, and 
consequently, with standard flip-flops is fast and easy. But their characteristic 
functions are not smooth. 

3.2 Algebraic Fuzzy Flip-Flops 

In the case of complementation for fuzzy negation, algebraic product and 
algebraic sum for t-norm and t-conorm, respectively, the characteristic equations 
(7) and (8) can be rewritten as 

22
R JQKJQKJQKQJQ2QJ)1t(Q −++−−+=+  (15) 

22
S JKQKQJKQJQQJ)1t(Q +−−−+=+  (16) 

These equations show the result of transformation into a simplified form by using 
the definition of algebraic product and sum. 

Combining equations (15) and (16) we obtain the unified equation of reset and set 
type: 

KQJQQJ)1t(Q −−+=+  (17) 



This equation is considered the fundamental equation of the algebraic fuzzy flip-
flop. It is remarkable how simple this combined equation is. In addition to its 
simplicity it represents as symmetrical, dual solution. 

The characteristics belonging to these expressions are demonstrated graphically in 
Figures 3 and 4. 

Evaluating the curves in the Figure, they clearly demonstrate the relation 
between )1t(QR + and )1t(QS + : 

[ ] 0)Q1(Q)J1(K)K1(J)1t(Q)1t(Q RS ≥−−+−=+−+  (18) 

thus 

)1t(Q)1t(Q SR +≤+  (19) 

as the reset types curves always go below the set ones. Algebraic operations 
produce smooth (differentiable) curves and surfaces with no breakpoints or lines 
at all. This is true also for the combined flip-flop which is not shown here. 

3.3 Drastic Fuzzy Flip-Flop 

It is known [7] that fuzzy set unions that satisfy the axiomatic skeleton containing 
boundary conditions, commutativity, monotony, and associativity are bounded by 
the inequalities 

)b,a(u)b,a(u)b,amax( max≤≤ , (20) 

where 

 a when b=0, 

=)b,a(umax  b when a=0, (21) 

1 otherwise. 

Similarly, fuzzy set intersections satisfy 

),b,amin()b,a(i)b,a(imin ≤≤  (22) 

where 

 a when b=1, 

=)b,a(imin  b when a=1, (23) 

 0 otherwise. 



Operations )b,a(umax and )b,a(imin are referred to in the literature as drastic 
sum and drastic product. The drastic sum and drastic product represent another 
pair of fuzzy union and fuzzy intersection which are extreme in the sense that for 
all [ ],1,0b,a ∈ the inequality 

)b,a(i)b,a(u)b,a(i)b,a(u minmax −≥−  (24) 

is satisfied for an arbitrary pair of fuzzy union (co-norm) u and fuzzy intersection 
(t-norm) i. 

Figures 5 and 6 show the behavior of these two extreme F3 s. The characteristic 
lines are piecewise linear again the curves often following the 0 or 1 line. 
Obviously these lines (and the surfaces they represent realize extreme cases even 
for the possible flip-flops (the lines in the Figure were obtained by mechanically 
connecting the 5 points we had obtained for the 5 characteristic values drawn up 
in the picture, finer representation would lead to even more extreme curve 
shapes). 

3.4 £ukasiewicz Fuzzy Flip-Flop 

The £ukasiewicz norm and co-norm are defined as follows: 

[ ]0,1bamax)b,a(iL −+=  (25) 

[ ]1,bamin)b,a(uL +=  (26) 

Based on them the £ukasiewicz flip-flops are defined as follows: 

[ ]1),0,KQmax()0,QJmax(min)1t(QR −+−=+  (27) 

[ ]0,1)1,QK2min()1,QJmin(max)1t(QS −−−++=+  (28) 

These sets of characteristics are identical with the characteristics of the Yager 
reset type flip-flop (w =1) in Figures 8 and 9. 

3.5 Fodor Fuzzy Flip-Flop (F4) 

In [6] Fodor and Kóczy proposed non-associative operations for a new class of 
fuzzy flip-flops. It was stated there that any F3 satisfying: 

P1: Fi (0, 0, Q) = Q, 

P2: Fi (0, 1, Q) = 0, 

P3: Fi (1, 0, Q) = 1, 



P4: Fi (1, 1, Q) = ni (Q). 

P5: Fi (νi, νi, Q) = νi. 

P6: Fi (D, ni (D), Q) = D, 

Where νi = ni (νi) for i=1, 2. 

Is a φ -transform of the basic algebraic F3 as given in Section 3.2, were the φ -
transform is an automorphism of the unit interval such that 

QR(t+1) = [ ].))K(1)(Q())Q(1)(J(1 φφφφφ −+−−  (29) 

Similarly, for theψ  -transform 

Qs(t+1) =  [ ].)K(1)(Q())Q(1)(J(1 ψψψψψ −+−−  (30) 

Thus another solution of P6: 

{ } { }
+

−+−
=+

2
0,QJmaxQ1,Jmin)1t(QR  

 
{ } { }

2
0,KQmax)K1,Qmin −+−

, (31) 

{ } { }
+

−++
=+

2
0,1QJmaxQ,Jmax)1t(QS  

 
{ } { }

2
0,KQ1maxK1,Q1max −−+−−

 (32) 

These equations were obtained by combining the standard and the £ukasiewicz 
norms by the arithmetic mean in the inner part of the formula. The other parts use 
£ukasiewicz operations. When recalculating (31) and (32) we find however that 
the second formula is incorrect in [6] because: 

[ ] =−+−=+ 1),Q,K1(T)Q1,J(Tmin)1t(QR  

 )Q,K1(T)Q1,J(T −+−=     and (33) 
 

[ ] =−−−+=+ 0,1))Q1(),K1((S)Q,J(Smax)1t(QS  

 1)Q1,K1(S)Q,J(S −−−+=  (34) 

where T and S denote the £ukasiewicz norms. From here: 



+
−−−+

=+
2

1)Q1,K1max()Q,Jmax()1t(QS  

         =
−−+−++

2
1)1,Q1K1min()1,QJmin(

 

          
( )

+
−−+

=
2

Q1,K1max)Q,Jmax(
 

                       1
2

)1,QK2min()1,QJmin(
−

−−++
 (35) 

Comparing this corrected form of the set type F4 we came to the surprising result, 
that there is only one F4 in this particular case as the two formulas are equivalent. 
Figure 7 presents the characteristic diagrams for these singular non-associative F3. 
Indeed, the diagram shows a similarity with the algebraic case, however with luck 
of smoothness. 

3.6 Yager and Dombi Fuzzy Flip-Flops 

Several classes of functions have been proposed whose individual members 
satisfy all the axiomatic requirements for the fuzzy union and neither, one, or both 
of the optional axioms. One of these classes of fuzzy unions is known as the 
Yager class and is defined by the function: 

[ ],)ba(,1min)b,a(u w/1ww
w +=  (36) 

where values of the parameter w lie within the open interval ( ).,0 ∞  

Yager intersection formula is given by: 

[ ].))b1()a1((,1min1)b,a(i w/1ww
w −+−−=  (37) 

In the formulas, a represents the membership grade for an element in fuzzy set A, 
and b represents the membership grade for an element in fuzzy set B. 

Using these definitions we can find the solution for: 

[ ])Q,K1(i),Q1,J(iu)1t(Q wwwR −−=+  and (38) 

[ ].)Q1,K1(u),Q,J(ui)1t(Q wwwS −−=+      (39) 

Figures 8, 9, 10, 11 present the diagrams for Yager flip-flops, for two typical 
cases when w = 1 and w = 4. The real curves are here also smooth. 



Finally, the following equations, where values of the parameter α lie within the 
open interval ( )∞,0  are called Dombi operators: 

( ) αααα /1

1
b
11

a
11

1b,au −−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

=   (40) 

( ) αααα /1

1
b
11

a
11

1b,ai

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −+

=  (41) 

The Dombi F3 is defined as: 

[ ])Q,K1(i),Q1,J(iu)1t(QR −−=+ ααα  and (42) 

[ ].)Q1,K1(u),Q,J(ui)1t(QS −−=+ ααα  (43) 

Figures 12, 13, 14 and 15 depict typical values in the Dombi operator case for two 
typical cases when α = 1, and α = 4. 

If a = 0 or b = 0 the value is understood in limit. These curves are also smooth. 

Conclusions 

We have examined a multitude of fuzzy operations from the point of view of how 
they generate reset and set types F3s. These different flip-flops showed interesting 
behaviour, sometimes having breakpoints and sometimes being smooth. These are 
some general topological behaviours which form certain classes producing 
monotonic, convex or concave and sometimes sigmoidal functions, as segments of 
the flip-flops’ functional surfaces. We found a single case when the two flip-flops 
merge into a single one; these were the F4 based on the corrected formula given in 
[6]. It remains an interesting open question, whether there are any other non-
associative operations which have the same advantageous properties as F4, which 
needs further investigations. 
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Figure 1 

Characteristics of min-max reset type fuzzy flip-flop for various values of J 

   

  

Figure 2 
Characteristics of min-max set type fuzzy flip-flop for various values of J 

 



   

  
Figure 3 

Characteristics of algebraic reset type fuzzy flip-flop for various values of J 

   

  

Figure 4 
Characteristics of algebraic set type fuzzy flip-flop for various values of J 



   

  

Figure 5 
Characteristics of drastic reset type fuzzy flip-flop for various values of J 

   

  

Figure 6 
Characteristics of drastic set type fuzzy flip-flop for various values of J 



   

  

Figure 7 
Characteristics of Fodor reset type fuzzy flip-flop for various values of J 

   

  

Figure 8 
Characteristics of Yager reset type fuzzy flip-flop for various values of J (w=1) 

 
 



   

  

Figure 9 
Characteristics of Yager set type fuzzy flip-flop for various values of J (w=1) 

   

  

Figure 10 
Characteristics of Yager reset type fuzzy flip-flop for various values of J (w=4) 

 



   

  
Figure 11 

Characteristics of Yager set type fuzzy flip-flop for various values of J (w=4) 

   

Figure 12 
Characteristics of Dombi reset type fuzzy flip-flop for various values of J (α=1) 

   
Figure 13 

Characteristics of Dombi set type fuzzy flip-flop for various values of J (α=1) 



   
Figure 14 

Characteristics of Dombi reset type fuzzy flip-flop for various values of J (α=4) 

   
Figure 15 

Characteristics of Dombi set type fuzzy flip-flop for various values of J (α=4) 


