
Evaluation of Soil-Parameters with Diffusion-
Neural-Network 

Zoltán Makó, Szilárd Máté 
Sapientia University 
530104 Miercurea, Ciuc, P-ta Libertăţii 1, Romania 
e-mail: makozoltan@sapientia.siculorum.ro, mateszilard@sapientia.siculorum.ro 

Abstract: Pedotransfer (PT) function can be defined as a predictive function of certain soil 
properties from other easily-, routinely-, or cheaply measured properties. The usual step in 
deriving PT functions is by forming empirical relationships between basic soil properties 
and parameters to be predicted. 
An Artificial Neural Network is a learning machine whose function depends on the training 
samples. According to the principle of information diffusion we can increase the certainty 
of the determined relation if we multiply the number of the training samples with the help of 
an appropriate information scattering function. Neural networks trained in this manner are 
called diffusion-neural-networks (DNN). 
In this paper we present a DNN, which can be trained to calculate the pH value of the soil 
using samples from the Ciuc-basin. With the weights of the trained network we construct a 
pH-value calculating PT function. 
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1 Introduction 

Pedotransfer functions have important role in building models for examining soil 
properties. The term pedotransfer function (PTF) was coined by Johan Bouma (in 
1989) as translating data we have into what we need. 

In soil science this means a function which can be defined as predictive functions 
of certain soil properties from other more available, easily, routinely, or cheaply 
measured properties (McBratney et al, 2002). 

The usual step in deriving PT functions is by forming empirical relationships 
between basic soil properties and parameters to be predicted. This can be achieved 
by various mathematical methods, such as multiple linear regressions (Wösten et 
al, 1995). A recent approach for fitting PT functions is to use artificial neural 
networks (Pachepsky et al, 1996; Schaap et al, 1998). 



In Romania, soil-evaluation is made in virtue of  the 125/1999 Ministry 
Ordinance. The methodology, the calculating models and the soil-evaluation was 
elaborated in 1987 by the Soil and Agrochemistry Institution. The soil value 
points are calculated from 17 ecological parameters (average annual temperature, 
average annual precipitation fall, gleyzation, surface-water gleyzation, particle-
size distribution, pollution, average slope, erosion, ground water level, flood risk, 
pore space, carbonate capacity, pH, physiologically useful volume, humus 
capacity and moisture excess) with the next formula: 

1 2 17( ... ) 100vS k k k= × × × ×  (1) 

where the ki parameters depends from the subjectivity of specialists and they are 
selected very circuitously from many page wide tables. 

The base of calculation in this Ordinance is the country’s first 8 yield of out-turns 
resulting a soil value point in the 0-100 interval. For this in intermountain, cold 
and humid basins like the Ciuc-basin due to climate prohibitive factors soil value 
points are below 50, resulting only III, IV and V class soil. 

The pH value is a determining parameter for the soil-value. In this paper we give a 
method for estimating pH values in unknown points based on a few sample points. 
The study area is a 6x10 km zone in the Ciuc-basin (Figure 1). 

 
Figure 1 

Location of the sample points 

For the prediction of the values we use the principle of information diffusion. In 
the Section 4 of the paper we present a Difussion-Neural-Network (DNN) which 
after a learning process is capable to estimate the pH value with 0.95 probability. 



2 The Diffusion of Information 

Let A ={xk ∈ X / k = 1,2,...,n} be a sample of data in a given normed space X that 
comes from the observation of some phenomenon. Let us denote a real relation 
with R. The method that defines the R from sample A is called an operator. 
Examples for operators: data series analysis, correlation examination, hypothesis 
examination, least squares method, the method of artificial neural networks, etc. 

Definition 2.1   Let R be a relation in X. The sample A is a correct-data set to R on 
universe U⊆X if there exists an operator γ such that we can obtain a relation R(γ,A) 
equal to the restriction of R at U. 

Definition 2.2   Let R be a relation in X. The sample A is an incomplete-data set to 
R on universe U⊆X if there doesn't exist an operator such that we can obtain the 
restriction of R at U from A. 

Definition 2.3   We consider a division Uj,  j = 1,...,m of universe U, i.e. 
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The characteristic function of the division Uj is { }1,0: →×UAmχ , where 

( , ) 1A kχ =x u if  xk ∈ Uj   and ( , ) 0A kχ =x u   if xk ∉ Uj , for all u ∈ Uj. 

The characteristic function is replaceable with membership function  μ : A×U → 
[0,1]. In this case, the value μ(xk ,u) shows how far the sample's element xk is in 
set Uj. 

Definition 2.4   The family of membership functions μ (:, uj) : U→[0,1], j = 1,...,m 
is a fuzzy division of the U. 

Since, the membership functions μ(:, uj) diffuse the information among the fuzzy 
sets Uj, hence the relations searching methods (operators) that use these 
membership functions will be called information-diffusion methods (operators). 

Definition 2.5   Let A ={xk ∈ X / k = 1,2,...,n} be a sample of universe U. The 
function μ : A×U→[0,1]  is a  scattering function of the information, if 

 i)   μ(xk, xk) = 1, for all xk ∈ A∩U; 

 ii) for all xk ∈ A and for all  u,v∈U , if ||xk – u|| ≤ ||xk – v|| then 

μ(xk, u)  ≥ μ(xk, v). 

For all elements xk of the sample A the scattering function define a fuzzy number 
with centre in xk and membership function μ(xk,:):U→[0,1]. The simplest 
scattering function is μt = χ. This function will be called trivial scattering function 
of the information. 



The scattering function of the information shows how far the data u can be the 
correct-data of a phenomenon. For example, if u is in sample A then u is totally 
correct-data of the phenomenon. Using the scattering function μ the sample A can 
be expand with new elements and so we get a sample notated by A(μ,U) with 
elements  (xk, uj, μ(xk, uj,)) ∈ A×U×[0,1], where uj ∈ U,  j = 1,...,p. 

If nX = then it possible to define scattering function with help of quasi-
triangular fuzzy numbers (Kovács, 1992). Let p ∈ [1, +∞] and g: [0, 1] → [0, +∞] 
be a continuous, strictly decreasing function with boundary properties g(1)=0 and 

+∞≤=→ 00 )(lim gtgt . The triangular norm generated by gp is given by the 
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We fuzzyfied all elements of sample A, i.e. for all components xki  of vector xk ∈ A 
we assign a quasi-triangular fuzzy number  < xki, λ(xki)>  with spread λ(xki) > 0, i = 
1,...,n. 

As follows from the definition of Tgp-Cartesian product the scattering function of 
information is given by 
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Let R be a relation on universe U⊆X and γ be an operator. If we are using the 
sample A ={xk ∈ X/ k = 1,2,...,n} to estimate the relation R then our method is a 
nondiffusion  estimator, and if we are using the sample A(μ,U), where μ is a 
nontrivial information scattering function, then our method is a diffusion 
estimator. The trivial information scattering function yield a nondiffusion 
estimator 

Theorem 2.1   (Principle of information diffusion - Huang and Shi, 2002) Let R 
be a relation on universe U⊆X=R

n
, where U is a convex set. Let A ={xk ∈ X / k = 

1,2,...,n} be a deterministic sample for estimation of R on universe U ⊆ X. We 
assume that γ is the best operator of relation R for some measurement of the error. 
The sample A is incomplete-data set of the relation R on U if and only if there 
exists a nontrivial information scattering function μ such that if we apply the 
operator γ to fuzzified sample A(μ,U), then we get a better estimation of R. 

The proof of this theorem it is found in (Mako, 2006). 



3 The Approximation Property of BP Artificial 
Neural Network 

The neural network can be understood as a mapping f : R
n
→R

m
, defined by           

y = f (x) = g (W⋅x), where x is the input vector, y is the output vector, W is the 
weight matrix and g is the activation function. The mapping f  can be decomposed 
into a chaining of mappings; the result is a multi-layer network R

n
→R

p
→ 

R
q
→…→R

m
. The algorithm for computing W is often called the training 

algorithm. The most popular neural network are the multi-layer back-propagation 
networks whose training algorithm is the well-known gradient descendent method. 
Such networks are called back-propagation (BP) networks. 

An artificial neural network is a learning machine whose function depends on the 
training examples. So, the machine does not recognize the real relation but it 
determines a numerical relation among the state parameters. 

A number of authors have discussed the universal approximation property of BP 
networks. For example, in 1989 G. Cybenko showed that any f: [a,b]→R 
continuous function can be approximated by a neural network with one internal 
hidden layer using sigmoidal activation function (Cybenko, 1989). Also in 1989 
K. Hornik et al. proved that the multi-layer networks can approximate the 
continous function to any degree of accuracy, i.e. multi-layer networks have the 
universal approximation property (Hornik et al., 1989). After that, in 1995 J. Wray 
and G. G. R. Green showed that, the universal approximation property does not 
hold in practice for networks implemented on computers (Wray and Green, 1995). 

According to the principle of information diffusion we can increase the certainty 
of the determined relation if we multiply the number of the training examples with 
the help of an appropriate information scattering function. Neural networks trained 
in this manner are called diffusion-neural-networks (DNN - Huang and Shi, 2002; 
Huang and Moraga, 2004). 

4 The Approximation of Soil Parameters with DNN 

As we mentioned above, calculating the soil-value is based upon knowing the 
exact values of the determining parameters. In default of these parameters the soil-
value can’t be calculated with acceptable accuracy. 

In Figure 2 we can see that increasing the number of sample points leads to 
contour lines with significantly different shape. 



Figure 2 
Contour lines of pH obtained from 8, 12, 16 and 24 sample points 

The few sample points raises the question that how near are to reality the results 
obtained from 24 sample points? Whether appears or not new spots if we increase 
the number of sample points? 

According to the principle of information diffusion we can increase the certainty 
of the pH value if we multiply the number of sample points with the help of an 
appropriate information scattering function. 

In interest of this we proceed in the following way. Assuming that the pH value 
has normal distribution, we generate the information diffusion with the g: [0, 1] → 
[0, +∞], ( ) ln(1/ )xg x =  function and with the p = 2 number. In this case the 
information diffusion function is 

( ) ( )( ) ( ) ( ) ( )

2 2 2

, , , , exp k k k
k k k

k k k

x x y y pH pH
x y pH x, y pH

x y pH
μ

λ λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Let A={(xk, yk pHk) | k=1,2,...,14} be a given sample. The sample set is choosen in 
order to contain the minimum and the maximum pH value and the peaks value of 
the region (Table 1). 

 

 

 



The X 
coordinate 

The Y 
coordinate 

Ph value 

520657.00 564977.00 5.20 
520657.00 566977.00 6.20 
520657.00 568977.00 7.00 
520657.00 570977.00 5.20 
520657.00 574977.00 3.60 
522657.00 564977.00 6.20 
522657.00 568977.00 7.00 
522636.51 572977.00 5.10 
524657.77 566977.00 6.10 
524657.77 568977.00 7.00 
524657.77 570977.00 6.10 
526657.00 564977.00 5.20 
526657.00 568977.00 6.60 

Table 1 
The primary samples 

We diffuse the information derived from this sample with the generator function 
g. If we consider 4 points (xk – δ, yk),  (xk + δ, yk), (xk, yk– δ) and (xk, yk+ δ), around 
on points (xk, yk) then the membership value of these points to fuzzy set F 
=projOxy(A) are 

 
2

expk
δμ
λ

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (3) 

where δ  is the small distance between sample points and λ is the spread of the F. 

The membership function of fuzzy set G =projOpH(A) is 

( )

2

, exppH k pH
δμ

λ

⎛ ⎞⎛ ⎞
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where λ(pH) is the spread of the G. 

Consequently, the derived sample is 

( ) ( ) ( ){ }, ,, ,1, ,1 , , , , , , , , , , / 1,...,k k k k k k k pH k k k k k pH kA x y pH x y pH x y pH k nδ μ μ δ μ μ= ± ± =  (5) 

where the first three components are input values and second two components are 
output values of BP network. We train the network with these samples. After the 
training process we get the estimation function of pH value in the region of the 
sample points. Using this estimation function we can calculate the pH value in any 
point of the studied region. 



In this study we used a BP network with three layer: the first layer has 12 neurons 
and the activation function is tansig (tansig(x) = 2/(1+exp(-2*x))-1); the second 
layer has 12 neurons and the activation function is tansig; the last layer has 2 
neurons and the activation function is purelin (purelin(x) = x). For training we use 
the Levenberg-Marquardt method with regularization (Hagan and Menhaj, 1994) 
and we get the training parameters shown in Figure 3. As it can be seen the Sum 
of Square Errors (SSE) is 0.0463767. 

 
Figure 3 

The training process with derived sample 

In our application μpH,k = μk = 0.96. Figure 4 shows the membership values of the 
24 samples after the training process. 

 
Figure 4 

The membership values of  samples 

What can we see in Figure 4? The poligonal line shows the membership value of 
pH in the sample points. For example, in the 20th sample point the calculated pH 
value with trained network has a probability of 0.965. We can see that all 
membership value is greater than 0.95. This means, if we presume normal 
distribution, then the probabilty degree of estimation made from derived samples 
is 0.95. For verify this, we compared the contour lines of  pH obtained with 
kriging (Isaaks and Srivastava, 1989) of 24 sample points to contour lines 
obtained from derived samples A  using 14 primary samples A. We can see a 
good resemblance. 



Figure 5 
Contour lines obtained with kriging from 24 points and countour lines obtained from derived samples 

using 14 primary sample points 

Conclusions 

The difficulty of this method resides in selection of the diffusion function. In part 
4 of this paper we presented a practical method for the calibration of the diffusion 
function. From the 24 known points we used 14 for pH values diffusion and the 
rest 10 for checking. Figure 5 (second picture) shows that it can be obtain a better 
aproximation from less sample points using diffusion function  than with the use 
of primary sample points (Figure 2 – second picture). 
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