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Abstract: The paper deals with an overview on the possibility to use Iterative Feedback 
Tuning algorithms in the design of a class of fuzzy control systems employing Mamdani-
type PI-fuzzy controllers. The presentation is focused on the two-degree-of-freedom fuzzy 
control system structure. The design method is validated by real-time experimental results 
for fuzzy controlled nonlinear DC drive-type laboratory equipment. 
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1 Introduction 

PI and PID controllers are widely used in more then 80% of industrial applications 
worldwide due to the good control system (CS) performance they offer [1]. Since 
the main tasks in control, the achievement of good CS performance in reference 
input tracking and the regulation in the presence of disturbance inputs, are difficult 
to be accomplished by means of PI and PID controllers in one-degree-of-freedom 



structures, an alternative is to develop two-degree-of-freedom (2-DOF) controllers 
which have advantages over the one-degree-of-freedom ones [2, 3]. However, the 
main drawback of 2-DOF control structures in the linear case is that although they 
ensure regulation, the reduction of the overshoot is paid by slower responses with 
respect to the modification of reference input. The presentation in the paper will 
be concentrated on the PI controller case. 

Another solution with to ensure good CS performance in the conditions of 
complex, even ill-conditioned, plants is fuzzy control. The development of fuzzy 
control systems (FCSs) is usually performed by heuristic means, incorporating 
human skills, with the drawback in the lack of general-purpose design methods. A 
major problem, which follows from this way to design fuzzy controllers (FCs) is 
the analysis of several properties of the FCS including stability, controllability, 
parametric sensitivity and robustness [4, 5]. 

If low cost automation solutions are required then systematic design methods 
devoted to relatively simple FCs. One approach is to design firstly 2-DOF PI 
controllers for the plants characterized by simplified linearized models. Then, 
transfer of results from the linear case to the fuzzy one resulting in 2-DOF PI-
fuzzy controllers (PI-FCs) is done in terms of the modal equivalence principle [6] 
accepting the well acknowledged equivalence in certain conditions between FCSs 
and linear / linearized CSs [7]. 

Iterative Feedback Tuning (IFT) [8, 9] is a gradient-based approach, based on 
input-output data recorded from the closed-loop system. The CS performance 
indices are specified through certain cost functions (c.f.s). Optimizing such 
functions usually requires iterative gradient-based minimization, implemented as 
IFT algorithms, observing that the c.f.s can be complicated functions of the plant 
and of the disturbances dynamics. The key feature of IFT is that the closed-loop 
experimental data are used to compute the estimated gradient of the c.f. Several 
experiments are performed at each iteration and the updated controller parameters 
are obtained based on the input-output data collected from the system. 

In this context, the aim of combining IFT algorithms with fuzzy control by the 
transfer of results from the linear case to the fuzzy one is to obtain new and 
attractive low cost fuzzy control solutions ensuring FCS performance 
enhancement. 

The paper is organized as follows. An overview on the IFT algorithms used in 
tuning the linear 2-DOF PI controllers is presented in Section 2. Then, Section 3 is 
focused on a new design method for a class of Mamdani-type two-degree-of-
freedom PI-fuzzy controllers (2-DOF PI-FCs). Section 4 is dedicated to the 
validation of the method by applying it in a case study regarding the speed control 
of a nonlinear DC drive-type laboratory equipment, and Section 5 ends the paper 
with concluding remarks. 



2 Overview on Iterative Feedback Tuning Algorithms 

Two versions of equivalent control system structures can be used in case of 2-
DOF control structures to ensure either the simultaneous tuning of controller 
parameters [10] or their separate tuning for each of the controller blocks [11]. The 
first version will be presented as follows, with the nomenclature according to Fig. 
1(a), where the two controller blocks are characterized by the transfer functions 
Cr(s) and Cy(s). The basic details in the two-degree-of-freedom control structure 
case are presented in [12]. 

 
Figure 1 

2-DOF control system structure used in IFT (a), and used feedforward filter (b) 

The IFT method consists of the steps A) … E) to be presented as follows in 
relation with the 2-DOF PI controller with the structure presented in Fig. 1(b), 
where: C(s) – transfer function of the basic PI controller: 

ciCiCic kTksTkssTksC =+=+=   )],/(11[/)1()( , (1) 

with kC – controller gain and Ti – integral time constant, F(s) – transfer function of 
the feedforward filter: 

)1/(1)( sTsF i+= , (2) 

r – reference input, y – controlled output, e = r1 – y – control error, u – control 
signal, r1 – output of block F(s) (filtered reference input), d1, d2, d3 – load 
disturbance input scenarios, with the general disturbance input d ∈ {d1, d2 , d3}, 
and te connections between the controller blocks in Fig. 1(a) and (b) are: 

)()(  ),()()( sCsCsFsCsC yr == . (3) 

In these conditions, the steps of the IFT approach are: 

A) A controller, of desired complexity, which stabilizes the system, has to be 
chosen. A discrete form of the controller is needed. The parameterization of the 
controller is such that the transfer functions Cr(s, ρ) and Cy(s, ρ) are differentiable 
with respect to its parameters, ρ being the parameters vector. 

In order highlight the controller tuning parameters, the parameters vector ρ has 
been added as additional input variable to the transfer function. This nomenclature 
will be used in the sequel in both continuous- and discrete-time not only for the 
transfer functions but also to the variables regarding the plant (the control signal u 
and the controlled output y). 



B) A reference model must be chosen, prescribing the desired CS behaviour 
observed in y. This model is typically chosen with first- or second-order dynamics 
and, for the sake of simplicity and better CS performance, it can be also chosen to 
be without dynamics, having the transfer function equal to the unity. 

C) The general expression of the c.f. J is proposed in (4) in the framework of this 
optimization problem: 
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where: N – length of each experiment, Ly, Lu – weighting filters, introduced to 
emphasize certain frequency regions, λ – weighting constant, δy – output error, the 
difference between the actual output (y) and the desired output (yd): 

dyyy −=δ . (5) 

D) The update law must be set by which the next set of parameters will be 
computed. This law corresponds usually to a Gauss-Newton scheme of type (6), 
other versions being also used to avoid the computation of second-order 
derivatives: 
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where: i – index of the current iteration, est[x] – estimate (generally) of the 
variable x, γi > 0 – parameter to determine the step size. 

E) The regular matrix Ri in (6) is a positive definite matrix, usually the Hessian of 
J(ρ): 
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Choosing the identity matrix for Ri ensures the negative direction of the gradient, 
but it is recommended to compute Ri by a quasi-Newton method or as the Hessian 
of the c.f. 

IFT algorithms are used to implement the process of solving the optimization 
problem (4), where several additional constraints can be imposed regarding the 
plant or the closed-loop system. One necessary constraint concerns the stability of 
the closed-loop system, and SD in (4) stands for stability domain. In addition, the 
expression of the c.f. can be modified by adding quadratic terms with the output 



sensitivity functions defined in the time domain, accordingly weighted to reduce 
the sensitivity of the CS with respect to the parametric variations of the controlled 
plant similar to the presentation in [13] for FCSs. 

IFT algorithms are iterative, in case of 2-DOF PI controllers considered here this 
corresponds to three real-time experiments performed with the CS, the first and 
the third one referred to as normal ones and the second one referred to as the 
gradient one. The normal experiments are characterized by the reference input fed 
to the CS while in case of the gradient experiment the role of reference input fed 
to the CS is played by the control error in the first experiment. The input-output 
data recorded from these three experiments are employed to compute the 
estimated gradients of the controlled output and of the control signal required in 
computing the estimated gradient of the c.f. J(ρ). 

The IFT algorithms considered here, contain the steps 1 … 8 to obtain the next set 
of parameters: 

Step 1   The three experiments are done and the input-output data (u1, y1), (u2, y2) 
and (u3, y3) are recorded. 

Step 2   The output of the reference model is generated, yd, and the output error δy 
is computed by (5). 

Step 3   The estimated gradient of the output is computed based on the data 
recorded form the real-time experiments. Before applying this approximation, the 
sensitivity function S and the complementary sensitivity function T must be 
expressed in discrete-time, with the following definitions according to the CS 
structure illustrated in Fig. 1(a): 
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The analytical expression of the gradient of δy is obtained using (8) and taking the 
derivatives with respect to ρ [10]: 
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Step 4   The control signal is a perfect realization of the control signal in the first 
experiment: 

1uu = . (10) 

Step 5   The estimated gradient of the control signal u is computed using (8), (10) 
and taking the derivatives with respect to ρ: 
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Step 6   The c.f. J(ρ) is computed according to (4) with the estimated and its 
estimated gradient results as follows: 
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with the values of the estimated gradients obtained as steps 3 and 5. 

Step 7   The matrix Ri is computed in terms of (7). 

Step 8   The next set of parameters is obtained by a Gauss-Newton scheme 
according to (6). 

3 Design Method for Mamdani-type Two-degree-of-
freedom PI-fuzzy Controllers 

The structure of the 2-DOF linear considered here consists of fuzzifying the basic 
linear PI controller with the transfer function C(s) in Fig. 1(b). The 2-DOF PI-FC, 
with the structure presented in Fig. 2, represents a discrete-time controller 
involving a basic fuzzy controller without dynamics (B-FC). The dynamics is 
inserted by the numerical differentiation of the control error ek expressed as the 
increment of control error, Δek=ek–ek−1, and by the numerical integration of the 
increment of control signal, Δuk. 

 
Figure 2 

Structure of two-degree-of-freedom PI-fuzzy controller 

The block B-FC is a nonlinear two inputs-single output system, which includes 
among its nonlinearities the scaling of inputs and output as part of its fuzzification 
module. The fuzzification is solved in terms of the regularly distributed input and 



output membership functions presented in Fig. 3. Other distributions of the 
membership functions can modify in a desired way the controller nonlinearities. 

The inference engine in B-FC employs Mamdani’s MAX-MIN compositional rule 
of inference assisted by the rule base presented in Table 1, and the centre of 
gravity method for singletons is used for defuzzification. 

The design method for this class of Mamdani-type 2-DOF PI-FCs consists of the 
following design steps: 

 
Figure 3 

Membership functions of B-FC in Fig. 2 

Table 1 
Decision table of B-FC 

ek Δek 
NB NS ZE PS PB 

PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

Step A   Design the continuous-time 2-DOF PI controller by a specific method to 
the linear case depending on the class of considered controlled plants (in 
simplified mathematical models for the design) and on the desired / imposed CS 
performance indices. 

Step B   Set the value of the sampling period Ts chosen in accordance with the 
requirements of quasi-continuous digital control, express the discrete-time 
equation of the-point filter F(z), express the discrete-time equation or equations of 
the digital PI controller C(z) in its incremental version: 

)( kkPkIkPk eeKeKeKu ⋅+Δ=⋅+Δ⋅=Δ α , (13) 



and compute the parameters {KP, KI, α}, expressed in (14) when Tustin’s method 
is applied: 

)2/(2/  ,/  )],2/(1[ sisPIisCIisCP TTTKKTTkKTTkK −===−= α . (14) 

Step C   Apply the modal equivalence principle to obtain two of fuzzy controller 
parameters, BΔe and BΔu: 

eIuee BKBBB == ΔΔ ,α , (15) 

where the third parameter, Be, represents designer’s option. 

4 Case Study 

A case study is considered to validate the new design method dedicated to the 
two-degree-of-freedom PI-fuzzy controllers proposed in the previous Section. The 
case study is focused on a fuzzy controller design for the class of plants with the 
transfer function P(s) characterizing the simplified mathematical models used in 
servo system control as part of mechatronic systems and of embedded systems: 

)]1(/[)( sTsksP ΣP += , (16) 

where kP is the controlled plant gain and TΣ is the small time constant or an 
equivalent time constant as sum of parasitic time constants. 

One solution to control this class of plants is represented by PI control [1]. A 
simple and efficient way to tune the parameters of the 2-DOF PI controller 
controlling the plant (16) is represented by the Extended Symmetrical Optimum 
(ESO) method [14], characterized by only one design parameter, β. The choice of 
the parameter β within the domain 1 < β < 20, leads to the modification of the CS 
performance indices (σ1 – overshoot, Σ= Ttt rr /ˆ  – normalized rise time, 

Σ= Ttt ss /ˆ  – normalized settling time defined in the unit step modification of r, 
φm – phase margin) according to designer’s option and to a compromise to these 
performance indices using the diagrams presented in Fig. 4 in the situation without 
feedforward filter. The presence of the feedforward filter with the transfer function 
F(s) improves the CS performance indices. 

The PI tuning conditions, specific to the ESO method, are: 

ΣiPΣc TTkTk βββ ==   ),/(1 2 . (17) 



 
Figure 4 

Control system performance indices versus β in the situation without feedforward filter 

These tuning conditions highlight the presence of only design parameter, β. This 
simplifies the application of the IFT algorithms in Section 2 because the 
parameters vector becomes a scalar: 

β=ρ . (18) 

The experimental setup consists of speed control of a nonlinear laboratory DC 
drive (AMIRA DR300). The DC motor is loaded using a current controlled DC 
generator, mounted on the same shaft, and the drive has built-in analog current 
controllers for both DC machines having rated speed equal to 3000 rpm, rated 
power equal to 30 W, and rated current equal to 2 A. The speed control of the DC 
motor is digitally implemented using an A/D-D/A converter card. The speed 
sensors are a tacho generator and an additional incremental rotary encoder 
mounted at the free drive-shaft. The block diagram of the hardware station is 
presented in Fig. 5. 

 
Figure 5 

Block diagram of hardware station 



The mathematical model of the plant can be well approximated by the transfer 
function P(s) in (16), with kP = 4900 and TΣ = 0.035 s. 

The development method proposed in the previous Section is applied, and for the 
sake of simplicity only the main parameter values are presented. The method starts 
with the choice of the initial value of the design parameter β = 6. Then, a version 
of IFT algorithm presented in Section 2 is applied in the condition of the following 
c.f., J: 
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The following “optimal” values of the PI-FC tuning parameters have been 
obtained after six iterations: Be = 0.3, BΔe = 0.03, BΔu = 0.0021, for β* = 5.76. 

Part of the real-time experimental results – the variations of r and y versus time – 
are presented in Fig. 6 and Fig. 7 for the linear CS (with 2-DOF PI controller) and 
for the fuzzy CS (with 2-DOF PI-FC) in the conditions: 

 
Figure 6 

Control system response with 2-DOF PI controller 



 
Figure 7 

Control system response with 2-DOF PI-fuzzy controller 

- without load in Fig. 6(a) and Fig. 7(a), 

- 5 s period of 10% rated d = d2 type load and r = 2500 rpm in Fig. 6(b) and 
Fig. 7(b). 

Conclusions 

The paper presents aspects concerning the use Iterative Feedback Tuning 
algorithms in the design of a class of fuzzy control systems employing Mamdani-
type PI-fuzzy controllers. 

It is proposed a new design method for the PI-fuzzy controllers validated by real-
time experiments related fuzzy control solutions dedicated to a class of plants 
applied in servo systems as part of mechatronics systems and of embedded 
systems. 

The design method illustrates the potential of IFT employed in connection with 
fuzzy control in complex plants. 

Future research will focus on the on-line implementation of IFT algorithms to with 
control other laboratory equipment with discrete-event systems including robots 
and manufacturing systems [15, 16, 17]. 
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