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Abstract: In this paper robust Variable Structure / Sliding Mode control of a 2 Degrees Of 
Freedom (DOF) Classical Mechanical System, a ball-beam system is considered. The 
control task has the interesting feature that only one of the DOFs of the system, i.e. the 
position of the ball is controlled via controlling the other axis, the tilting angle of the beam. 
Since the acceleration of the ball rolling on the beam depends on the gravitation and the 
tilting angle of the beam, and due to the phenomenology of Classical Mechanical Systems 
the directly controllable physical quantity is the rotational acceleration of the beam, this 
system is a 4th order one because it is the 4th time-derivative of the ball's position that can 
directly be influenced by the control. Another interesting feature of this system is its 
"saturation" since the rotational angle of the beam must be limited within the interval        
(-90°, +90°) that also sets limits to the available acceleration of the ball. In the present 
approach a feedback control is applied in which the above limitation is achieved by the 
application of an angular potential and an angular velocity potential. The here applied 
robust control is based on the traditional concept of “error metrics”. 
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1 Introduction 

The accurate control of the “ball-beam system” in which a ball can roll on the 
surface of a beam the tilting angle of which is driven by some actuator is a 
physically interesting task. The motion of the ball essentially is determined by the 
tilting angle and the force of gravitation. This means that even if we are in the 
possession of a very strong actuator, the acceleration of the ball along the beam is 
limited by the above two factors. Since the directly controllable quantity is the 
torque determining the 2nd time-derivative of the angle tilting the beam, this 
system acts as a 4th order system in the sense that the 4th time-derivative of the 
ball’s position along the beam is determined by the tilting torque. In more details 
it can be written that if the parameters of this system are as follows: the 
momentum of the beam ΘBeam=2 kg×m2

, the mass of the ball mBall=2 kg, the radius 
of the ball r=0.05 m, and the gravitational acceleration is g=9.81 m/s2. Via 
introducing the quantities A=ΘBeam, and B=ΘBall/r2+mBall, the following equations 
of motion are obtained: 
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in which variable ϕ describes the rotation of the beam counter-clockwisely with 
respect to the horizontal position in rad units, and x in m units denotes the distance 
of the ball from the center of the beam where it is supported. Variable Q [N×m] 
describes the torque used for rotating the beam. From (1) d2x/dt2 can be expressed 
as a function of ϕ. Since this angle cannot be made abruptly vary, following two 
derivations by time d4x/dt4 can be expressed with d2ϕ/dt2 as follows: 
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In the possession of the desired d4x/dt4 value, the dynamic model of the system, by 
the use of (2) and the 1st equation of the group (1) the necessary torque Q can be 
computed. If we have an exact system model, this computation corresponds to: 
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It is evident that if ϕ∈(-π,π) then ∂Q/∂x(4)<0 that corresponds to a well defined 
control action according to which to increase x(4) Q has to be decreased, and vice 
versa. Normally it can be supposed that the parameters of the actual system are not 
precisely known. Instead of the actual parameters some model values are used as 
A~ , and B~  constructed of the model values of the other parameters. On the basis 

of this rough model at first the desired rotational acceleration of the beam is 
estimated as 
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in which the last two terms two potentials are introduced for the rotational angle 
and for the rotational velocity of the beam. In the simulations β=5 [dimless], and 
n=1 [dimless] were used. The physical meanings of the potential terms are 
evident: the 1st term nonlinearly curbs the increase in |ϕ| around 1.5 rad, the 2nd 
term curbs the angular velocity |dϕ/dt| around 3 rad/s. Nearby the small |ϕ| angles 
and small |dϕ/dt| values the effects of these "flat" potentials are negligible. This 
"moderated" value for |d2ϕ/dt2Des| is then substituted into the "model variant" of 
the 1st equation of the group (1) to calculate the necessary torque, Q. From 
practical point of view these potentials have the advantage that they are not 
singular but grow drastically nearby the appropriate limit values. By properly 
setting the values of the Γ parameters and β for the actual feedback policy these 
terms can guarantee that ϕ remains within certain limits. In the sequel the 
feedback policy applied in this control is discussed. 

2 The Robust VS/SM Control 

In the case of robust Variable Structure / Sliding Mode Controllers it is a popular 
choice to introduce the operator (d/dt+λ)m-1 and apply it to the trajectory tracking 
error if the order of the set of differential equations determining the state 
propagation is m (in our case m=4) [1]: 
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in which λ>0. If S=0 then (d/dt+λ)m-2→0 exponentially. Roughly speaking it can 
be stated that during the time ≈2λ this quantity practically becomes 0. If this 
situation is achieved the term (d/dt+λ)m-3→0 exponentially, etc. Via following this 
argumentation it can be expected that after finite time the tracking error [xNom-x] 
starts to converge to zero exponentially. Since by calculating the time-derivative 
of S in (5) x(m)Des can be determined, in the typical case of Robust Controllers an 
approximate system model used to be satisfactory to drive S into the vicinity of 0 
during finite time. For this purpose various strategies can be described. In this 
paper we try to prescribe the 
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strategy with positive constant K value. In the sequel this control is investigated 
via simulation. For the error metrics λ=6/s was chosen in the forthcoming parts. 



3 Simulation Results – Setting the Parameters 
In the following simulations instead of the actual parameters the model values as 

BallBallBallBallBallBall mrBmmAA ~/~~,5.0~,4.0~,2~ 2 +Θ=Θ=Θ==  were used. In Fig. 1 
the formation of the phenomenon called “chattering” can be traced as the 
parameter K increases. 

 

 
Figure 1 

The formation of the phenomenon called chattering in the phase space of the tiliting angle of the beam 
(dϕ/dt [rad/s] vs. ϕ [rad] with increasing parameter K=10 (upper left), 20(upper right), 30 (lower left), 

and 40 (lower right) [m/s4] 

As Fig. 2 illustrates it the accuracy of the trajectory tracking significantly is 
improved with increasing K. This improvement can also be traced in the phase 
space of x, too. Since the fluctuations present in Fig. 1 appear in the 4th time-
derivative of x, the phase-space of x remains smooth, these fluctuations are 
integarted out in it. 

It also is an interesting task to check the modeling accuracy in the trajectory 
tracking of the robust controller. As it was mentioned (6) can be “exactly” realized 
only in the possession of the exact dynamic model of the system. From this point 
of view it can be expected that a considerable overestimation of the parameter A 
leads to more hectic motion due to overactuation effects. Leaving the other 
parameters of the control uncahnged, in Fig. 3 the AA 4~

= , AA 2~
= , AA 5.0~

=  
estimated values were used for a slightly damped nominal trajectory. The decrease 
in the amplitude of chattering as well as the improvement of the tracking accuracy 
are evident on the basis of Fig. 3. 



 

 

 

 
Figure 2 

The improvement in trajectory tracking (x [m] vs.time [s]) with increasing parameter K=10 (1st raw 
left), 20 (1st raw right), 30 (2nd raw left), 40 (2nd raw right) [m/s4], and the appropriate phase trajectories 
of the displacement of the ball (dx/dt [m/s] vs. x [m] in raws 3-4, respectively. In the last raw the great 

difference occurs at the initial error relaxation. 

 



Of course besides manipulating the model parameters chattering can be reduced 
by simply smooting the switching rule in (6) by introducing a widht parameter w 
as e.g. in (7). Normally this smoothing reduces the tracking accuracy. 

 

 

 
Figure 3 

The reduction of chattering (the phase space of tilting angle dϕ/dt [rad] vs. ϕ [rad], 1st column) and 

trajectory tracking error (xNom-x) [m] vs.time [s], 2nd column) of the decrease in parameter AA 4~
=  

(1st raw), AA 2~
=  (2nd raw), AA 5.0~

=  (3rd raw). (In the last two rows of column 2 zoomed 
excerpts are displayed.) 
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In Fig. 4 the effect of the smoothing width w is described for two different values 
(w=6 and w=1) for the same system. 

As it can well be seem increasing width w smooths the phase trajectory of the 
tilting angle ϕ, and, as a consequence, makes the relaxation of the error metrics 
slower. Its consequences also manifest themselves in the less accurate phase 



trajectory tracking, trajectory tracking for x, as well as allowing higher absolute 
values for the error metrics S. 

 

 

 

 
Figure 4 

The effect of the smoothing width w on the control: w=6 (left column), w=1 (right column): the phase 
space of tilting angle dϕ/dt [rad] vs. ϕ [rad] (1st raw), the pahse space of the ball’s displacement dx/dt 
[m/s] vs. x [m] (2nd raw), the trajectory tracking error (xNom-x) [m] vs.time [s] (3rd raw), and the error 

metrics S [m/s3] vs. time [s] (4th raw) 



Conclusions 

In this paper a Variable Structure / Sliding Mode controller was developed or a 4th 
orer physical system, the ball-beam system, in which the control task consists is 
positioning the ball by properly tilting the beam. While such control taks in 
general are considered on the basis of Barbalat’s lemma and the Lyapunov 
function technique [1], [2], in our case simple, angular, and angular velocity 
potentials can limit the angular position an velocity of the tilted beam. These 
potentials behave in similar way as the functions of type κ, with the exception that 
their support is not bounded. The almost exponential increase of the here used 
function can compensate the effect of any linear feedback of fnite constant gains. 
The effects of the errors of the modeling parameters as well as compensation of 
chattering were successfully studied. The general expectation that at the costs of a 
little degradation of the tracking accuracy smooth control ca be devloped was 
confirmed by these investigations. 
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