

PC /laptop
interface

camera

objective

Hardware-software Solutions to Surveillance an
Objective

Emil Voisan, Daniel Iercan, Florin Dragan, Onut Lungu
University “Politehnica” from Timisoara, Faculty of Automatics and Computer
Science, V. Parvan no. 2, Timisoara, emil.voisan@aut.upt.ro

Abstract: This paper shows the automatic supervision possibility of different objectives
using a camera and a computer/laptop. For connecting the camera to the computer and for
command it, it was realised a hardware-software interface. Using this interface we can
rotate the camera using a small engine so we can have a good view of entire objective. The
user program is developed using Kylix and permits an exact control of the camera moving
in operator mode and in automatic mode. We can also introduce pre-established positions
of the camera. Virtual representation of surveilled area is also available to determine best
locations to place surveillance hardware.

Keywords: hardware interface, kylix, coin, virtual

1 Introduction

Different objectives need the presence of a human observer 24 hours from 24
hours. For avoiding this inconvenient for each objective we could use a camera
and centralize data on a PC/laptop. An important issue in this case is the mobility
of the camera regarding the overseen objective.

The general scheme of this surveillance system is presented in Figure 1.

Figure 1
General scheme of the surveillance system

This system is realized using a microcamera connected at one computer or laptop
and controlled on the movie plan by a rotative stand. The computer or laptop can
be remote accessed by Internet or intranet and permits to connect few such
systems on a single display.

The novelty of this system consists on the operating system – Linux – and the
simplicity of the hardware interface.

The camera is connected at the PC/laptop on the parallel or USB port. The image
acquired using this camera can be stocked on the HDD of the PC/laptop and
prepared with filters or different compression algorithms depending of the
requirements. On the other hand, the system can be modified and the camera gain
new degrees of freedom in the sense that it’s possible to control the movie using
more motors.

2 Hardware Interface Description

The implementation of this surveillance solution implies hardware and software
aspects. On the hardware side it’s very important an easy design for the
positioning of the camera. On the software side we must take in consideration the
control of the hardware designed and the integration of the images flow on the
application program realized.

On the hardware design of the interface between PC/laptop and the rotative stand
we must take in account some simple and efficient solutions for a
performance/costs good rate. So, the orientation of the camera must be very
precisely in horizontal and vertical plan to take a good panorama of the entire
objective. The positioning of the camera must have a low speed to avoid the
smoke effects and the space of rotation must be very clear to avoid the break of
the connection cables.

On the horizontal plan, the rotation axe pass on the vertical maintenance arm of
the camera. On the vertical plan, the rotation axe is perpendicular on the first axe.
Taking in account these aspects, the stand need two small motors, one for each
axe.

Because the camera isn’t heavy (about 100 g), the maintenance arm is fixed on the
basis with a bearing and it’s from aluminium, the solution for control the stand is
two step by step motors of small powers which are able to a precise orientation.
The used motors are STH-39D103-01 models, made in Japan and with the
following characteristics:

• an angle of 1.8 degrees/step;

• 0.16 absorbed current;

• 4 phases, with 6 conductors;

• 12 V tension.

In the simple version, when the distance between computer and the camera is
about 5-6 m, the interface between the computer and the two motors can be
realized on the principle of using transistors with power switch role. But in this
case it’s obvious that the needing for the control mean 8 transistors and it’s more
simple to use a driver ULN200 with 7 lines of command/outputs, an integrated
monolithic specialised circuit. This circuit permits a simultaneous control of 7
lines of medium power (0.5 A) at a tension of max 50 V. Taking in account the
characteristics of our motors it’s clear that this circuit satisfy our needs for control.
For controlling the 8 wrappings of motors we use one line to command two
wrappings of different motors.

An other problem solved was the limitations of the moves on the horizontal and
vertical axes to avoid the break of the cables or the detaching of the camera. For
this scope the stand was foreseen with 2 optoelectronics sensors. The scheme for
the hardware interface between computer and camera is shown on the appendix.

Figure 2
Simple control for one motor

3 Virtual Environment

COIN3D is a high level library built over OpenGL running over a wide range of
Operating Systems - Unix based, Windows and MacOS. To generate 3D scenes
makes use of an scene graph, development speed and easiness increasing versus
OpenGL. Also COIN3D is fully compatible with well known Open Inventor.
Extra features being support for VRML, 3D sound, 3D textures and parallel
processing. All those features made this toolkit to be the natural choice for
developing the application.

COIN3D is only the 3D rendering library, all other interactions with Operating
System (window operations, handle user input) must be accessed through other
libraries like SoWin(Windows), SoQT (Linux, Windows), SoXt(Linux). Library
of choice for this project was SoQt for its versatitlity and cross platform spread.

Figure 3

Coin 3D structure

Foundation in 3D scene rendering is the node object, it has associated properties
such: object shape, material properties, geometric transformations, etc., properties
that also can be nodes, basically we will end with a tree like structure representing
scene database.

Important elements to create a scene are:

- scene objects – objects that will be rendered on the screen

- lights – necessary to iluminate the scene.

- cameras – needed for scene visualization.

To describe an object into the Open Inventor terminology the object must be
disassembled into its parts and each of it needs to be specified separately – Figure
4.

Figure 4

Chair component parts

Side 1

Side 2

Shape - CubeTranslation

Separator – chair side

As it can be seen in this figure the chair can be divided in three parts, each part
being derived from a cube class. Each part can be implemented using the
following components:

- separator: to isolate the side specific properties.

- shape: specific shape of the object – in this case cubic.

- translation: will translate the object to its custom position – according to
the object specifications.

This structure can be represented through a graph like in Figure 5:

Figure 5

Graph components

In order to create the entire scene graph the only operation that needs to be
performed it is to put the graph for each component into a more complex structure.

Figure 6

Desk Scene Graph

Shape

Cylinder
Translation

Separator chair

foot

Shape - CubeTranslation

Separator –

chair side1

Shape - Cube Translation

Separator –

chair side 2

Separator – Chair Root

Separator

chair foot

Translation
Shape

Cylinder

As it can be seen the complexity of the scene graph grows with the number of the
objects included into the final simulation.

To apply an action to the scene graph (such rendering) first it is needed an
instance of the action class and second it will be applied to the root node of the
scene graph. Typically, executing an action involves traversing the graph from top
to bottom and left to right. During this traversal, nodes can modify the traversal
state, depending on their particular behavior for that action.

Another important aspect that concern the placement of the objects into the virtual
space it is the coordinate system which is a right handed one, with z axe coming
out from the screen. The objects are described in their own local coordinate space,
and only after the transformations have been applied the object it is integrated into
the world coordinate space.

4 Software Interface

The software module of the application was developed on Linux using the Kylix
software development suite and allows a precis control of the camera movement.

The software application must cover two aspects – the control of the hardware
interface and the integration of the video stream. The hardware interface is
controlled through the parallel port of the computer and the image it is acquired
scanning the USB port where the WebCam is connected.

Figure 7
Software interface

Concerning the camera movement control we considered that the application must
have two modes of work – automatic and manual. Within the manual mode the
user can change camera orientation based vertical and horizontal planes.
Restrictions that can appear are concerning the speed of the camera rotation, a too
high speed can determine “blackouts” on the acquired image.

From the video acquisition point of view the software module is able to display
the video stream and if it is necessary to save the images on disk, using different
compression algorithms.

Using the virtual environment to avoid large amount of data transferred on the
network we simulate the same objective:

Figure 8
Virtual objective

Conclusions

The paper shows in fact 2 modes for surveillance an objective. One based on a
camera postioning control and one with a virtual point of view. The objective
could be so different and the virtual software permitt us to model a large scale of
objects. Using virtual surveillance it could be attractive from placing surveillance
camera point of view. In a large scale environments with multiple target objects in
surveillend area virtual model for this environment can be used to determine ideal
position for surveillance cameras in relative simple manner.

Future improvement for this project is a connection,synchronisation, between
surveillance cameras and virtual model for targeted environment. In this case the
main advantage of the virtual environment is a more comprehensive overview of
the entire scenery.

References

[1] Josie Wernecke, The Inventor Mentor : Programming Object-Oriented 3D
Graphics with Open Inventor

[2] Jacobs, Jon Q., Delphi developer's guide to OpenGL, 1999

[3] Neil Matthew, Richard Stones, Alan Cox, Beginning Linux Programming

[4] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, Linux Device
Drivers

[5] Open Inventor Architecture Group, “Open Inventor C++ Reference
Manual”, Addison-Wesley Publishing Company, 1994

[6] Open Inventor Architecture Group, “Open Inventor: Nodes Quick
Reference”, http://techpubs.sgi.com/library/, 1994

[7] P. Korondi, H. Hasimoto, “Intelligent Space, As An Integrated Intelligent
System”, Electrical Drives and Power Electronics, Slovakia, 2003

Appendix

Hardware interface

