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Abstract: The population diversity is an important issue in evolutionary optimization, 
playing the main role in exploring the search space. The aim of this paper is to analyze the 
influence of some diversity enhancing mechanisms on the ability of two algorithms related 
to evolutionary optimization, differential evolution and particle swarm optimization, to 
solve static and dynamic optimization problems. 
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1 Introduction 

1.1 Particularities of Evolutionary Optimization in Static and 
Dynamic Environments 

Evolutionary algorithms are population-based search methods inspired by natural 
evolution which are able to solve optimization problems. The success of the 
evolutionary search is highly dependent on a good balance between two antagonist 
processes: exploration and exploitation. Exploration allows searching the entire 
search space by ensuring the redirection of the search toward new regions, while 
exploitation favours a quick convergence toward the optimum. In many 
population-based algorithms the explorative power is influenced by the population 
diversity (a population consisting of almost identical elements has a low 
exploration power). During the evolution, the population usually loses its 
diversity, thus without a diversity enhancing mechanism the search process is not 
able to efficiently explore the search space. In the case of static optimization 
problems a low diversity could induce premature convergence, i.e. the search is 



stuck in a local optimum. In dynamic optimization, a population with a low 
diversity is not able to track the changing optima. 

Optimization in dynamic environments is characterized by the variation in time of 
the parameters involved in the objective function or in the constraints. Real-world 
optimization problems are frequently of this type (e.g. dynamic scheduling, 
dynamic resource allocation, peptide identification, dynamic risk minimization 
[1]). While a static optimization problem consists of finding nRDx ⊂∈*  such that 

)(*)( xfxf ≥  for all Dx ∈  (in the case of a maximization problem) a dynamic 
one consists of finding for each time moment t  the value )(* tx  which satisfies 

),(~))(*,(~ xtftxtf ≥  for all Dx ∈ . Solving dynamic optimization problems is 
more challenging than solving static optimization problems and the difficulty of 
the problem is influenced by the severity of the optimum change. 

There are two main types of optimum changes: continuous and discontinuous. In 
the continuous case the optimum follows a continuous trajectory in the search 
space. An example of a simple dynamic optimization problem with continuously 
changing optima can be defined starting from a static base function, f, as follows 
[2]: ))((),(~ txfxtf Δ−= . If x* is the optimum of f then )(*)(* txtx Δ+=  is the 

optimum of f
~

 corresponding to moment t. The movement vector )(tΔ  controls 
the optimum trajectory. If, for instance, tt ⋅=Δ δ)(  then the trajectory of the 
optimum is linear and htxhtx ⋅+=+ δ)(*)(*  for any h>0. On the other hand, if 

)/2sin()( Ttt ⋅⋅=Δ πδ  then the optimum’s trajectory is a periodic one. The 
severity of the change is determined by the value of 0>δ . In the discontinuous 
case the optimum’s trajectory is a discontinuous one meaning that the optimum 
can jump from one position to another one. Such behaviour could be obtained by 
using a multimodal base function and by allowing the random modification of the 
optima positions and values. Such an approach was used by Branke in developing 
the Moving Peaks Benchmark [4], a well-known generator of dynamic 
optimization test problems. 

While in static optimization the main aim is to estimate as accurate as possible the 
optimum, in dynamic optimization the aim is to track as closely as possible the 
changing optimum. Problems with discontinuous changes are usually more 
difficult than those with continuous changes. If the change in the optimum 
position is too severe the only approach is to start a new search process. When the 
change is rather small the search process can benefit from the info gathered in the 
past avoiding the necessity of starting the search from scratch. The population-
based search methods are good candidates for such a task because of their ability 
to explore the search space. This explains the large number of evolutionary 
approaches in dynamic optimization [5]. 



1.2 Diversity Enhancing Mechanisms in Dynamic 
Optimization 

In the last decade a plethora of mechanisms having the aim of improving the 
behavior of population-based methods especially in the case of dynamic 
optimization have been proposed (for a review see [6]). 

There are two main approaches in enhancing the population diversity necessary 
for an optima tracking process: a reactive one and a proactive one. The first 
approach consists in reacting to a change by triggering a diversity increasing 
mechanism (e.g. hypermutation, random immigrants). The main advantage is that 
between changes the search process is not altered allowing the algorithm to 
approach the current optimum. The main disadvantage is the necessity of 
implementing a change detection mechanism and of establishing the amount of 
diversity which should be introduced (e.g. mutation probability in the case of 
hypermutation or the percent of random immigrants). Such an approach is 
appropriate for discontinuous changes. 

The proactive approach consists in maintaining the population diversity 
throughout the entire run of the algorithm. This means avoiding the convergence 
by diminishing the selection pressure (through sharing or crowding) or by directly 
stimulating the diversity (through random immigrants in each generation). The 
main advantage of such an approach is that it does not need a change detection 
mechanism while the main disadvantage is the slow convergence. Usually the 
algorithm will be able to follow the optimum but not too close. This approach is 
appropriate for continuous small changes in the objective function. 

Another diversity preserving mechanism is based on using multiple populations. If 
each population maintain information about a different promising area of the 
search space the search process can easily follow the optimum. This approach can 
be of reactive type if a population is reinitialized when a change is detected or of 
proactive type when populations are always enforced to search different areas. The 
multi-population approach is appropriate for multi-modal objective functions. 

The existence of many different mechanisms raises the problem of chosing the 
right mechanism for a given problem. Besides its effectiveness, a mechanism 
should be as simple as possible in order to not increase the computational cost of 
the algorithm. In the same time a given mechanism could have different impact on 
different population-based optimization methods. 

The aim of this paper is to analyze some simple diversity enhancing mechanisms 
applied to two population-based optimization algorithms: differential evolution 
(DE) [10] and particle swarm optimization (PSO) [7]. The problem of diversity 
enhancing in DE and PSO algorithms is discussed in Sections 2 and 3, 
respectively. Experiments on some test problems are presented in Section 4. 



2 Diversity Enhancing in Differential Evolution 

Differential evolution (DE) introduced in [10] is a population-based optimization 
method based on a recombination operator which uses randomly selected parents 
and a simple selection procedure based on a competition between a parent and its 
offspring. The generational version of DE consists of constructing a new 
population },...,{ 1 mzzz =  starting from the current population },...,{ 1 mxxx =  
by computing a set of candidates },...,{ 1 myyy =  as follows: 
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where *x  is the best element of the current population, r1, r2, r3 are random 
indices from },...,1{ m  and ]1,0[∈λ , ]2,0(∈jF , ]1,0(∈jp  are control 
parameters. For a static maximization problem, the elements of the new generation 
are selected from the populations x and y depending on their quality with respect 
to the objective function f: ii yz = if )()( ii xfyf >  and ii xz =  otherwise. 
Frequently used variants are obtained for 0=λ  (DE/rand/1) and 1=λ  
(DE/best/1). 

This simple scheme proved to be efficient and robust in solving static optimization 
problems as long as the problem of premature convergence is avoided. Premature 
convergence means that the search is stuck in a local optimum because of a too 
low diversity in the population. Two mechanisms which proved to be successful 
for static optimization are [11]: (i) adapt the parameters jp  and jF such that the 

recombination step avoid a too quick decrease of the population diversity; (ii) use 
multiple populations and a random migration strategy. 

As diversity measure we used the variance computed for each component of the 
population elements: }),...,({)( 1

j
m

jj xxVarxVar = . When 0=λ we obtained a 
relation between the population variance before and after recombination: 

njxVarFpmpmpyVar j
jjjj

j ,1     ),()2//21()( 22 =++−=  (2) 

In order to keep the diversity to almost the same level, at each generation, t, the 
ratio )(/)( jj

j zVarxVarc γ=  is computed and the parameters for the next 
generation are chosen such that 

njcFpmpmp jjjjj ,1    ,2//21 22 ==++− . (3) 



The parameter 0>γ  allows us to control the variance level (values larger than 
one favour an increase of diversity). At each generation, either the probability 
parameters, jp , or the parameters jF , are adjusted according to eq. (3). This 
diversity controlling process by parameters adaptation proved to be beneficial in 
avoiding premature convergence. Moreover since the parameters jp  and  jF can 
be randomly initialised it completely avoids the task of parameters tuning. 

The multi-population approach is characterized by the fact that in each population 
an adaptive DE algorithm is applied and periodically a random migration process 
is started: any element of each subpopulation is, with a given migration 
probability, interchanged with a randomly selected element from an arbitrary 
population. 

Despite their benefits for static problems these mechanisms are not powerful 
enough for tracking changing optima. Recently, in [9] some schemes for 
enhancing the DE behavior for dynamic optimization problems have been 
proposed. The main analyzed mechanisms are: (i) allowing some elements of the 
population to oscillate around the best element of the current population (e.g. 
brownian elements, quantum elements); (ii) using multiple populations and an 
exclusion method which forces each population to search for a different peak. 

The problem which we analyze in this paper is to find the simplest mechanism 
which is still powerful enough to allow for tracking a changing optimum. In the 
case of continuous changes of the optimum position (without large jumps) it 
should be enough to perturb the current best element in order to arrive in the 
region of the new position of the optimum. Thus, using a “cloud” of elements 
wandering around the currently best element could ensure the ability of the 
algorithm to track the changing optimum. 

In the DE with brownian elements the population is divided in two parts: a set 
},...,{ 1 μxx of elements which evolves according to DE rules and another set of 

elements which just wander around the best element, *x , of the previous 
generation: 

njmiNKxy j
jj

i ,1,,1   ),1,0(* =+=⋅+= μ  (4) 

where N(0,1) is a random value with a standard normal distribution and 0>jK . 
Numerical results obtained by applying these mechanisms for static and dynamic 
problems are presented in Section 4. 



3 Diversity Enhancing in Particle Swarm 
Optimization 

Particle Swarm Optimization (PSO) [7] has been proposed almost in the same 
time as Differential Evolution. Its basic idea is to use a population of elements 
called particles, each one being characterized by a position vector, ix , and by a 
velocity vector, iv . It is a generational algorithm and at each generation the 
velocity is updated based on the relative positions of the particle with respect to its 
best position and with respect to the best position found by the entire population 
(called swarm). Unlike DE,  the PSO algorithms do not use selection. The 
adjustments of the particles velocity and position satisfy: 
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where ip is the best position of particle i, gp  is the best position found by the 
entire population, U(0,1) denotes a random value uniformly distributed in [0,1], 

21 ,, ϕϕγ  are positive coefficients which influence the particles dynamics. In order 
to ensure the convergence, the parameters 21 ,, ϕϕγ should be carefully chosen. 
Theoretical results on PSO convergence properties [5] give hints to choose 

appropriate values, e.g. 421 >+ϕϕ and )42/(2 2 ϕϕϕγ −+−= , 21 ϕϕϕ += . 
Premature convergence can appear when the velocities become too small and the 
particles are frozen. A natural idea to solve premature convergence problems in 
PSO is to give an impulse to particles which stagnate either by implicitely 
increasing their velocity or by perturbing their position. Such an approach has 
been recently proposed in [8] where velocities smaller than a threshold, cv , are 
replaced with a random value ρ/)1,1( maxVU − . This variant is called Turbulent 
Particle Swarm Optimization (TPSO). We propose the use of a simpler approach 
based on perturbing the position of frozen particles instead of their velocities: 
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Since any change in the position has an influence also on velocity, the particle can 
escape from the local optimum. Comparative results for these two diversity 
enhancing strategies both in the case of static optimization and in the case of 
dynamic optimization are presented in the next section. 



4 Numerical Results and Discussion 

The aim of the numerical experiments was to compare the diversity enhancing 
schemes presented in sections 2 and 3 for DE and PSO algorithms in the case of 
some classical static and dynamic test functions. 

4.1 Static Optimization 

One of the functions for which both DE and PSO algorithms prematurely 
converges if their parameters are not very carefully chosen is Rastrigin’s function: 
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This is a multimodal function and the evolutionary algorithms are easily trapped in 
its local minima. The global minimum is in (0,…,0) and its value is 0. We used 
this function for n=30 and tested the ability of some diversity enhancing 
algorithms to approach the optimum value within a precision of 510−=ε . In order 
to collect the statistics (average and standard deviation of the number of 
generations until convergence) each algorithm has been independently run for 30 
times. A run is considered to be successful if the optimum is approximated within 
the above specified precision in at most 5000 generations. 

For DE algorithms the following diversity enhancing mechanisms have been 
analyzed: (i) parameters adaptation starting from random values of parameters 
(based on eq. (3)); (ii) multi-population approach with random migration (the 
migration process is started at each 100 generations and the migration probability 
is 1.0=mp ; (iii) adaptive parameters plus brownian elements. These variants 
have been compared with DE having fixed parameters and randomly chosen 
parameters, respectively. The results presented in Table 1 illustrates the fact that 
the best behaviour is obtained using the adaptive variant and the fact that by 
introducing brownian elements the convergene is slow down. In all tests the 
population has 50 elements and the value of λ  was 0. On the other hand using 
multiple populations (5 populations of size 10) and a random migration has 
beneficial influence even in the case when the parameters p and F are randomly 
chosen. 

The classical PSO algorithm with recommended values for the parameters [5]: 
833.221 == ϕϕ , 6.0=γ prematurely converges for Rastrigin’s function. As 

results presented in Table 2 suggest, both the Turbulent Particle Swarm 
Optimization (TPSO) introduced in [8] and the simple perturbed PSO proposed in 
Section 3 are effective. On the other hand by combining them with a multi-
population approach the convergence is significantly slow down. The results in 



Table 2 have been obtained for populations of 50 elements (in multi-population 
variant 5 populations of size 10 have been used). A run is considered to be 
successful if the algorithm found the optimum in at most 10000 generations. 

By analyzing the results presented in Tables 1 and 2 it follows that DE is slightly 
faster than PSO. 

 p=0.5 
F=0.5 

Random 
parameters 

Adaptive 
parameters
( 025.1=γ ) 

Random 
parameters 
+ migration 

Adaptive 
parameters 
+ brownian 
elements  

% of succ. 100% 6% 100% 76,6% 100% 
< gen> 1448.3 3543 1042.53 2290.91 3923.8 
stdev(gen) 23.006 839.5 42.79 570.184 399.154 

Table 1 
Results of DE variants for Rastrigin test function 

 TPSO 

( 2,10 7 == − ρcV ) 

Perturbed PSO 

( 1,10 7 == − KVc ) 

TPSO+ 
migration 

Perturbed 
PSO + 
migration 

% of succ. 100% 100% 49% 50% 
< gen> 2689 2706 8010 7094.4 
stdev(gen) 783.19 769 1229 1879.8 

Table 2 
Results of PSO variants for Rastrigin test function 

4.2 Dynamic Optimization 

To analyze the impact of the diversity enhancing schemes for dynamic 
optimization problems we used as test functions a dynamic variant of Ackley’s 
function and a test function from the moving peaks benchmark [4]. 

The dynamic Ackley’s function is obtained by linearly moving the optimum: 

Rtstsx

tsx
n

tsx
n

exxtf

iii

n

i
ii

n

i
iin

∈+=+−∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−+= ∑∑

==

δδ

π

  ,)()1(   ],32,32[

)))((2cos(1exp))((2.0exp20),...,,(
11

2
1  

At each generation the optimum coordinates are increased with δ . When the 
optimum reaches the boundary of the domain the sign of δ is changed. This is 
similar with the linear trajectory proposed in [2]. In numerical tests the absolute 
value of δ is set to 0.1 and n=30. The evolution of the averaged distance between 
the best element in the population and the current optimum is illustrated in Figure 
1 for some variants of the DE algorithm. The analysis is made for 5000 



generations, a population of size 50, a moving step 1.0=δ  and 10 independent 
runs of the algorithms. The main remarks are: if the parameter γ of the adaptive 
scheme in DE is high enough )25.1( =γ  the behaviour is better than in the non-
adaptive case (p=0.5, F=0.5). For smaller values of γ  (e.g. 1=γ ) the adaptive 
DE is not able to track the optimum (Figure 1 (d)). On the other hand, using a 
percent between 25% and 50% of brownian elements the behaviour of the 
algorithm is significantly improved. It should be remarked that in order to track 
the optimum it is necessary to reevaluate at each generation the elements of the 
current population. 
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Figure 1 
Behaviour of DE for dynamic Ackley function. (a) DE with fixed parameters (p=0.5,F=0.5); 

(b) Adaptive DE with 25.1=γ ; (c) DE with fixed parameters (p=0.5, F=0.5) and 50% brownian 
elements; (d) Adaptive DE with 1=γ  

The Moving Peaks Benchmark [4] offers a flexible way to generate dynamic test 
functions. The test function which we used is of the following form: 
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The tests have been conducted for a particular case characterized by n=5 and only 
one moving peak (k=1). At each 10000 function evaluations the position (vector 
p), the height (h) and the width (w) are randomly modified. This is similar to a 



discontinuous trajectory of the optimum. The measures which we used to evaluate 
the algorithms behavior are the current error, e(t), and the offline error, o(T): 

∑
=

−=−=
T

t

txtftxtf
T

Totxtftxtfte
1

*
*

*
* )))(,())(,((1)(     )),(,())(,()(  (9) 

where )(* tx  is the true optimum and )(* tx is the currently best element of the 
population. 

For DE algorithms we analyzed the impact of parameters adaptation and of 
brownian elements. As is illustrated in Figure 2 the adaptive DE has an acceptable 
behavior but not as good as if a small percent of brownian elements is used. 
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Figure 2 
Behaviour of DE for one moving peak: offline error (left), current error (right). DE variants: adaptive 
DE )( 1=γ  + 50% brownian elements (thick line), adaptive DE )( 1=γ + 25% brownian elements 

(dashed line), adaptive DE )( 25.1=γ without brownian elements (thin line) 

Since the convergence of PSO algorithms is slower than the convergence of DE 
algorithms it would be expected that classical PSO algorithms are able to track 
slowly moving optima. These is illustrated in Figure 3 which also suggest that for 
simple dynamic problems there is no need for supplementary diversity enhancing 
schemes (as position/velocity perturbation or brownian elements). 
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Figure 3 

Behaviour of PSO for one moving peak. offline error (left), current error (right). PSO variants: 
classical (dashed line), perturbed PSO (thin line), PSO + 25% brownian elements (thick line) 



Conclusions 

For static problems, the ability of DE to avoid premature convergence is 
significantly improved by the parameter adaptation scheme and the multi-
population approach. Using brownian elements in DE algorithms slows down the 
convergence but used without other mechanisms cannot prevent premature 
convergence. On the other hand it proved to be a valuable mechanism in tracking 
changing optima. 

Both the Turbulent PSO introduced in [8] and the simple perturbed PSO proposed 
in Section 3 proved to be effective in avoiding premature convergence. 
Concerning the multi-population approach the numerical experiments suggest that 
it slows down the convergence of PSO but it is not able to avoid premature 
convergence by itself. 

In the case of relatively slowly changing optima good results are obtained using 
simple diversity enhancing mechanisms (e.g. parameter adaptation which favor 
large values of the variance or brownian elements in the case of DE algorithms) or 
even no supplementary mechanisms (as in the case of PSO algorithms). However 
when the severity of change is higher supplementary schemes (e.g. exclusion [9], 
charged PSO [3]) should be used. 
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