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Abstract: In the present paper we investigate the dynamic properties of a specific class of 
nonlinear delay-differential equations by studying the asymptotic behavior of their 
solutions by means of Lyapunov’s exponent. Systems of delay-differential equations can be 
used to model recurrent neural networks. 
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1 Introduction 

The stability of nonlinear dynamical system is a difficult issue to deal with. When 
we speak of stability in the context of nonlinear dynamical system, we usually 
mean stability in the sense of Lyapunov. A. M. Lyapunov (see [10]) presented the 
fundamental concepts of the stability theory known as the first method of 
Lyapunov. This method is widely used for the stability analysis of linear and 
nonlinear systems, both time-invariant and time-varying. As such it is directly 
applicable to the stability analysis of neural networks. The study of 
neurodynamics may follow one of two routes, depending on the application of 
interest: 

1 Deterministic neurodynamics, in which the neural network model has a 
deterministic behavior. In mathematical terms, it is described by a set of 
nonlinear delay-differential equations that define the exact evolution of the 
model as a function of time. 

2 Statistical neurodynamics, in which the neural network model is perturbed 
by the presence of noise. In this case, we have to deal with stochastic 
nonlinear differential equations, expressing the solution in probabilistic 
terms. The combination of stochastic and nonlinearity makes the subject 
more difficult to handle. 



In this paper we restrict ourselves to deterministic neurodynamics. 

2 Definitions of Lyapunov´s Exponent 

In order to proceed with the study of neurodynamics, we need a mathematical 
model for describing the dynamics of nonlinear system. A model most naturally 
suited for this purpose is the so-called state-space model. According to this model, 
we think in terms of a set of state variables whose values are supposed to contain 
sufficient information to predict the future evolution of the system. Let 

)(,),(),( 21 txtxtx n…  denote the state variables of a nonlinear dynamical system, 
where continuous time t is the independent variable and n is the order of system. 
The dynamics of a large class of nonlinear dynamical systems may then be cast in 
the form of a system of first-order delay-differential equations written as follows: 
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This system of delay – differential equations can be used to model neural 
networks. 

The initial value problem (IVP) for (1) is defined as follows: 

On the initial set ) { }
0 0 0 0{ : , , }tE t t t t t tτ τ= − − < ∈ ∞ ∪  

let a continuous initial vector functions ( )0 1 2 1( ) ( ), ( ), ( ), ... , ( )nt t t t tϕ ϕ ϕ ϕ ϕ −=  

be given. 

We have to find the solution )( )0( ) ,nx t C t∈ ∞  of (1) ( )1 2( ) ( ), ( ), ... , ( )nx t x t x t x t= , 

satisfying 

)()(1 ttx jj ϕ=+   if  0ttt ≤≤−τ ,  1,...,2,1,0 −= nj . (2) 

Under the above assumptions, the initial value problem (1), (2) has exactly one 
solution on the interval )0 ,t ∞  where 
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In the following we consider the system of nonlinear delay-differential equations 
of the form 
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Definition 1.1   A superior Lyapunov’s exponent of a vector function ( )x t  is 

called a real number λ  which is defined by 
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Definition 1.2   A inferior Liapunov’s exponent of a vector function ( )x t  is called 

a real number λ which is defined by 
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Definition 1.3   A superior central exponent of Cauchy’s matrix of a linear 
differential system is called a real number Ω  which is defined by 
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Definition 1.4   A inferior central exponent of Cauchy’s matrix of a linear 
differential system is called a real number ω  which is defined by 
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We have to find the norm of Cauchy’s matrix of the linear differential system by 
using the following formula 
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where we have to search a maximum element of a set of all solutions of the linear 
differential system. 



Choose any nontrivial solution ( )w t = ( ) ( ) ( )( )1 2, , ... , nw t w t w t  of the set of all 

solutions of (3). 

If ( ),w ija t  denotes ( ) ( ) ( )ij ij jp t q t v t+ ,    1, 2, ... , ,í n=    1, 2, ...j n=  
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then ( )w t  is the solution of the linear differential system 
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too. The equality 
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implies the fact that all coefficients ( ),w ija t  are continuous functions of time and 
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Theorem 1.1   Let a R∈  satisfies the inequality (6). Then, every nontrivial 
solution ( )y t  of nonlinear differential system (3) satisfies the inequality 
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Proof: Due to the fact that all constants a do not depend on the parameter w, there 
suffices to prove this theorem for all nontrivial solutions of (4). 

In the first part of the proof we show that any nontrivial solution ( )y t  of (4) 

satisfies the inequality 
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The first part of the proof is complete. 



In the second part of the proof multiplying both sides of this inequality by [ ] 2
y t

− , 

one may obtain 
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Integration of (9) gives 

( )
( )
( )

( )0 0
0

ln
y t

a t t a t t
y t

− − ≤ ≤ − . 

Consequently, 

( ) ( )
( )

( )0 0

0

a t t a t ty t
e e

y t
− − −≤ ≤ . 

Notice that the solution ( )w t  satisfies the inequality (7), too. 

The proof is complete. 

Remark: Implicit in this theorem is the fact, that if ( )y t  satisfies the inequality 

(7) then Lyapunov´s exponents satisfy the inequality 

a aω λ λ− ≤ ≤ ≤ ≤ Ω ≤ . 
Conclusion 

Lyapunov’s exponents are important in the study of a asymptotic behavior of 
solutions nonlinear differential equations. Nonlinear dynamical systems order 
greater than 2 have the capability of exhibiting a chaotic behavior that is highly 
complex. Lyapunov’s exponents can be used to study a chaotic behavior of 
solutions of neurodynamical systems, too. 
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