
Automata Construct with Genetic Algorithm

Vít Fábera
Department of Informatics and Telecommunication, Faculty of Transportation
Sciences, Czech Technical University, Konviktská 20, 110 00 Praha 1, Czech
Republic, e-mail: fabera@fd.cvut.cz

Vlastimil Jáneš
Department of Control and Telematics, Faculty of Transportation Sciences, Czech
Technical University, Konviktská 20, 110 00 Praha 1, Czech Republic, e-mail:
janes@fd.cvut.cz

Abstract: The first step is to create an automaton model in a process of digital hardware
design. The automaton model is an input to software synthesis tools and is created by an
engineer. The genetic programming as a part of artificial intelligence tries to create
programs using evolutionary principles. Similar approach can be used in a hardware
design – to create automatically an automaton model by this technique. The algorithm
called ”evolutionary programming” was created in 60’s by Fogel and it was the first
attempt to construct an automaton by evolutionary principle, but only with mutation
operator. Some recently works tries to construct automata without output function using
genetic algorithm (for purpose of lexical analysers). This contribution describes
experiments with genetic algorithms (GA) on more general automata (Moore and Meally),
compares ”classical” GA with genetic operators affected by probability. The minimisation
is built-in genetic algorithm. The algorithm is tested on simple examples.

1 Introduction

The first step is to create an automaton model in a process of digital hardware
design. Further, the automaton model is an input of software synthesis tools. The
model has to be created by engineer. The genetic programming as a part of
artificial intelligence tries to create programs using evolutionary principles (a
program is created by another program instead of programmers by genetic
algorithm). Similar approach can be used in a hardware design, i.e. to create
automatically an automaton using evolutionary techniques. This idea isn’t a new
one. Automata have already been constructed by evolutional techniques in 60’s.
Fogel [1] created an ”evolutional programming” that was the first attempt to

construct an automaton by evolutionary approach. The algorithm only used a
mutation operator in contrast to present genetic operators (crossover and
mutation). Some recently works [2] tries to construct automata without output
function using genetic algorithm (for purpose of lexical analysers).

This contribution describes experiments with genetic algorithms (GA) on more
general automata (Moore and Meally), compares ”classical” GA with genetic
algorithm, where genetic operators are affected by probability. The minimisation
is built in genetic algorithm. The algorithm is tested on simple examples.

1.1 Finite Automata

A finite automaton is a mathematical behavioral model of a sequential logical
system and it is defined as

A = (X, Y, Q, δ, λ, Q0),

where

X .. finite set of input symbols

Y .. finite set of output symbols

Q .. finite set of internal states

δ .. transition function (δ: Q × X → Q)

λ .. output function (λ: Q × X → Y, ev. λ: Q → Y )

Q0 .. initial internal state (Q0∈ Q)

Transition and output functions are realised with combinational logic, the internal
state is stored in flip-flops. If an output function has a form λ: Q × X → Y , the
automaton is a Meally one. If an output function has a simpler form λ: Q × X → 
Y, the automaton is a Moore one.

1.2 Genetic Algorithm Overview

Genetic algorithms (GAs) are evolutionary techniques to search an optimal
problem solution. The principle is derived from Darwin’s theory of evolution and
was introduced by Holland in 70’s from biological point of view [3] and by
Goldberg from technical point of view [4]. In nature, individuals reproduce and
children have different characteristics because crossover of chromosomes happen
(offspring inherit characteristics from mother and father). Sometimes, genes
change due to environment. This is a mutation process. Good individuals survive
during centuries and the percentage of individuals with bad characteristics
degreases.

GAs copy this principle. Theory of GAs is based on schemata theory and
probability. The first step of the algorithm is to generate set of N initial solutions
randomly. The set is called generation, one solution is an individual. The quality
of the each individual is measured by the fitness function. In the second step, pairs
of individuals (parents) from generation are selected randomly but probability of
selection is proportional to their fitness. It means better individuals have greater
chance to be propagated into next generation. Roulette-wheel selection, Baker’s
Stochastic Universal Sampling or Tournament selection are the most used
methods [5]. Then, crossover operation is applied to the selected pair of parents
with probability pc and newly created individuals (children) are copied into the
next generation. Parents are copied into the next generation with probability (1-pc)
without changing. The parents selection and the crossover operation repeats until
new generation is created. Finally, each individual in the new generation is
mutated with a small probability pm or left not changed. Individuals are evaluated
by fitness function. New generations are created repeatedly applying selection,
crossover and mutation processes. The algorithm terminates when a criterion is
achieved. The criterion is usually formulated as follows: terminate when a solution
of given quality is found (the given value of fitness function is reached) or a given
number of generation was created. The flowchart graph of GA is in Figure 1.

The individual is often represented as binary, integer or real string. The crossover
between two parents has the form: crossover point is generated randomly, the part
situated on the left side from crossover point of parent no. 1 and the right part of
parent no. 2 are copied into the first child. The second child is generated from left
part of the second parent and the right part of the first parent. An allele (index in
string) is selected randomly and the gene (value) is changed (inverted) in mutation
process. It must be checked in both cases if offspring are valid solution.

Parameters of GA are set empirically. The values about pc = 0,7-0,9 and pm =
0,05-0,2 are recommended. A crossover operation helps to tend to better solution,
a mutation process prevents to lock in a local optima. It’s said by researchers that
higher value of pm lead to worse convergence. But GA with higher pm are
successful in some application (for example, Fogel [1] only used a mutation,
searching a solution in [6] was successfully verified with pm = 0.6).

Variations of standard GA were established. Newly created offspring (by
crossover or mutation) replace their parents if only they are better than ones. Two-
point crossover is used instead of classical one-point crossover. Genetic
programming operates very often over tree-representation of individuals [7]. Other
derivation is parents are selected with the same probability for crossover,
“intergeneration” is created and selection is applied during a copying individuals
into new generation. Nowadays, all possible approaches are mixed and it’s
mentioned generally about evolution techniques.

start

generate initial
population randomly

evaluate fitness function
for every individual

select N/2 pairs of
individuals with respect to

their fitness

apply crossover with pc
probability

apply mutation with pm
probability

replace old generation

is reached the
criterion ?

select the best individual as
solution

end

+

-

Figure 1
Genetic algorithm

2 Genetic Algorithm and Automata

As mentioned, Fogel [1] created automata with mutation operator, Lucas [2]
designed automata without output function using GA. Collins and Jefferson solved
“An Artificial Ant” problem by searching a Meally automaton with constant
number of internal states, n=4. They used classical GA with stationary length of
linear chromosome [8]. The aim was to create more general automaton (Meally or
Moore) with classical genetic algorithm. The algorithm was tested on simple
examples for the present. Four examples are presented in this paper.

3 Individuals Representation

The individual is a final automaton. The automaton is determined by transition
and output tables, both represented as matrices - transition matrix and output
matrix. The output table is degraded onto vector in the case of Moore automaton.
Input parameters of algorithm for creating an individual are as follows: the
number of input symbols x, the number of output symbols y, and a upper bound of
internal states q. Input symbol are automatically coded with numbers 0, ..., x-1,
output symbols are automatically 0, ..., y-1. Internal states are marked 0, ..., q-1,
initial state is always Q0, i.e. 0 value. Hence, the transition and output matrices
have q rows and x columns. The output matrix of Moore automaton is a q
dimensional vector. The value of transition matrix in ith row and jth column is the
next state for present state i and input j. If the value is -1, the transition or output
isn’t defined.

Example: we have an Moore automaton model of pulse generator, realized as
synchronous sequential system, see Figure 2. The sets of input and output symbols
are both {0,1}, the automaton has three internal states Q0, Q1, Q2, represented by
numbers 0, 1, 2. A matrix representation is also in Figure 2. The value 1 located in
the row 0 and column 1 determines that the automaton changes its internal states
from state 0 to state 1 applying input symbol 1.

 col 0 col 1
row 0 0 1 0
row 1 0 2 1
row 2 0 2 0

transition
matrix

output
matrix

Figure 2
An automaton example and its representation

This matrix representation of an individual (called 2D chromosome) is simple and
it’s suitable for easy implementing of genetic operator. A problem can be with
upper bound of internal states, the user of algorithm has to estimate minimal
number of internal states needed to solve given problem. It can be eliminated by
modification of algorithm. The maximal size of automaton can be increased
during running of algorithm, if it is founded that all or most of states are used and
problem is not solved (not implemented yet).

4 Genetic Operators

Standard genetic operators one-point crossover and mutation are used.

Crossover

Two parents are selected randomly from generation with the same probability. The
crossover point is selected randomly with uniform probability from transition or
output matrix and two offspring are created, Figure 3.

00
22
00

0
1
0

2 0
2 1
1 0

-1
1
0

Parent 1 Parent 2

0 0
2 1
1 0

0
1
0

20
22
00

-1
1
0

Offspring 2

crossover
point

Offspring 1

Figure 3
Crossover operator

Mutation

It is selected with probability p=0.5 if the transition table or output table is
mutated. Then the transition or output is selected randomly and it is changed,
Figure 4.

20
21
10

-1
1
0

Parent

0 0

-1 1

1 0

0

1

0
Offspring

mutated transition

Figure 4
Mutation operator

5 Fitness Function and Selection

Fitness function should verified that the automaton corresponds to specification.
That is a general problem to verify automaton, especially if the specification isn’t
formalized. One of behavioural model of sequential systems is sequential mapping
that maps input sequence of final length to output sequence. An idea is to create
training set of pairs of input and matching output sequences, similar as in neural
networks. Each individual is tested on this training set. The fitness function
measures successful rate how the individual passed the test. It’s clear that
automaton which pass all pairs needn’t be general one to solve the problem if a
training set is not designed good (it happened within water pumps example). If
complex combinational circuits are designed by GA, neither all pairs are tested
due to combinatorial catastrophe, despite of these algorithms are used. This
problem will not be probably solved in the future.

Nevertheless, the training set consists of sequence pairs is a base of testing
individual. An example of training set related to pulse generator is in Figure 5.
Because it’s a Moore automaton, the valid output symbol is located in the output
sequence one clock cycle late.

The output sequence is calculated for each automaton (individual) and each input
sequence in the set. The calculated sequence is compared with the right output

sequence in the set. The ratio
n
lP = is calculated for each pair, where n is the

length of sequence and l is the length of the beginning successful part of the

output sequence. The ratio iPratio min= over all pairs is found and it’s a base
value of fitness function (very strict approach). The function (defined after this
manner) gives a chance to algorithm to construct an automaton as by a man, from
the beginning state step by step.

Two automata with different number of internal states can be equivalent. After
automaton is constructed, designers try to do minimisation of the automaton. This
aspect is taken into account. So, the fitness function is defined as two dimensional:

F = [ratio,k],

where ratio is a ration defined above and k is the size of the automaton (the size
of connected component calculated from the initial state 0). Let F1 be F1 = [ratio1,
k1] and F2 be F2 = [ratio2, k2]. Automaton A1 has value of fitness equal to F1,
automaton A2 has value of fitness equal to F2. Order is defined: A1 < A2 (A1 is a
worse automaton than A2), iff

ratio1 < ratio2 or (ratio1 = ratio2 and k1 > k2)

Selection is a tournament method, because it is good realized with two-
dimensional function.

6 Mutation Affected by Probability

Mutated gene (transition or output in tables) is selected randomly with uniform
distribution. It may result that already good created transitions and outputs are
uselessly corrupted. Transitions and outputs which seem to be good should have
lower probability of change than others. That’s way probability matrix for each

00001000111100
00000100010000

01000111111100
00100010000000

01100011100000
00100001000000

11110011111000
01000001000000

Figure 5

Example of a training set

automaton is calculated during fitness function estimation of each individual.
Lucas and Reynolds [2] label states during estimation of individual. Because their
automata have no output function the labeling is only determined by
correspondence of expected and reached final state. If correspondence is reached
all state in trajectory are positive labeled.

Moore and Meally automata have output functions, so we can compare output
symbol of the tested automaton with symbol in training sequence at each step.
Score of each transition and output is calculated by the rule described bellow.
First, we suppose that the automaton made a transition from state i to state j
applying input symbol x. Current input symbol is y. If the output symbol of the
tested automaton is equal to output symbol in the sequence at current step, the
value -1 is added to score of output which is determined with the state j in the case
of Moore automaton or with the state j and input y in the case of Meally
automaton respectively. Transition from the state i and input symbol x is affected
in the same way. If the output symbol of the tested automaton is not equal to
output symbol in the sequence at current step, the output and transition are
penalized – the value 1 is added. It is summarized concurrently how many times
the transition (or output) was tested (value marked by n). After all automata are

estimated, the
n

scoreratio = is calculated for each transition and output. If n=0

the let the ratio be 0. The ratio values are in <-1,1> range. The -1 value means that
the transition (output) are absolutely successful. The ratio is transformed with
linear formula:

dratioap ++=)1(

Values p are normalized so that the sum across all matrix is equal to 1.0. The
values are probabilities of mutation transition (or output) in tables. The probability
of change of gene is proportional to its quality.

7 Experiments

The algorithm is implemented in Borland C++ Builder. Results are shown on four
examples: pulse generator (Figure 2), autonomous counter mod 8, counter mod 8
with enable, automaton for control water pumps (Figure 6).

The function of counters is clear. The automaton for control water pumps has
three bit input symbols, each bit is a state of a one water level sensor. The
automaton controls two pumps.

Q0/0 Q1/1 Q7/7 …

autonomous counter

Q0/0 Q1/1 Q7/7 … 1 1 1

1

0 0 0

counter with enable

Q0/0
Q1/01

Q2/11111

111 or
011

001

011 111

000

000 or 001 or 001

automaton for control water pumps

001 or

Figure 6
Example of automata

Results are shown in tables below. The algorithm was run ten times with the same
parameters. Training sets of sequences were created by author. It’s shown the
smallest, average and the greatest number of generation, when the right solution
was founded for the first time. Normal algorithm and “probability” algorithm are
compared. Other parameters are: N is the size of generation, q is maximum
number of states (upper limit), I is the number of iteration.

The symbol NF means that the right solution wasn’t found in all 10 runs. Number
of examples and runs is small for the present to do statistical conclusion for the
present. Nevertheless, the algorithm seems to be relatively robust to parameters, if
it found a solution. The mutation operator is meaningful. Probability version of
algorithm increased its ability rapidly in the case of counters.

It was observed, when the probability version was tested with fourth example, if
many non-minimal (but good) solutions dominate in population, minimal solution
is searched hardly. Naturally, if the additive parameter equals to 0, absolutely
successful transitions or output have zero probability of change. Small value of d
parameter about 0.2 would be more suitable.

Algorithm was tested on two simple Meally automatons besides – automatons
which receive serial input of 1 bit width and recognized subsequence of odd (even
respectively) numbers 1. The solution was found in 78 generation for the first
time.

Automaton which receives three bit serial numbers and recognizes them wasn’t
found with parameters N=1000, I=1000 not even with probability version. Its
graph is tree based. A part of tree appeared when Moore automaton was being
created, but not with Meally.

Pulse generator
Normal algorithm

N = 100, q = 5, I = 100
 Smallest Average Greatest

Pc = 0.8, Pm = 0.3 53 77 84
Pc = 0.5, Pm = 0.3 29 86 57
Pc = 0.2, Pm = 0.6 11 22 47
Pc = 0.2, Pm = 0.8 21 64 75

Probability algorithm
N = 100, q = 5, I = 100, Pc = 0.2, Pm = 0.6

a = 1, d = 0.0 NF NF NF
a = 1, d = 0.2 19
a = 1, d = 0.4 7 44 73

Autonomous counter
Normal algorithm

N = 100, q = 10, I = 500
 Smallest Average Greatest

Pc = 0.8, Pm = 0.3 168 228 378
Pc = 0.8, Pm = 0.5 98 - 396/NF
Pc = 0.2, Pm = 0.6 97 278 457
N = 500, q = 10, I = 100
Pc = 0.8, Pm = 0.3 47 72 86

Probability algorithm
N = 100, q = 10, I = 100, Pc = 0.2, Pm = 0.6

a = 1, d = 0.0 54 57 58

Experiments showed that this “strict fitness” is suitable for transition graph with
cycles, but not for automata with tree-based transition graph. It also degrades
crossover operator. Next work will focus on “classical fitness” that passes all test
sequence till the end.

Counter with enable
Normal algorithm

N = 100, q = 10, I = 500
 Smallest Average Greatest

Pc = 0.8, Pm = 0.3 462 - 474/NF
Pc = 0.8, Pm = 0.5 98 - 396/NF
Pc = 0.2, Pm = 0.6 414 - 491/NF
N = 500, q = 10, I = 100
Pc = 0.8, Pm = 0.3 154 247 336

Probability algorithm
N = 100, q = 10, I = 100, Pc = 0.2, Pm = 0.6

a = 1, d = 0.0 79 132 159
a = 1, d = 0.2 86 112 133

Controlling water pumps
Normal algorithm

N = 100, q = 5, I = 100
 Smallest Average Greatest

Pc = 0.8, Pm = 0.3 71* - 87/NF
Pc = 0.8, Pm = 0.5 78 - 80/NF
Pc = 0.2, Pm = 0.6 NF NF NF
*automaton wasn't minimal, but was OK
N = 500, q = 5, I = 100
Pc = 0.8, Pm = 0.3 34 59 60

Probability algorithm
N = 100, q = 10, I = 100, Pc = 0.2, Pm = 0.6

a = 1, d = 0.0 46** 132 65
a = 1, d = 0.2 50*** - 82/NF

** four of solutions were not minimal
*** two of solutions were not minimal

Conclusion

The article summarizes the first experience with automata constructed with
classical genetic algorithm. It compares classical algorithm with mutation affected
by probability matrix that seems to be more successful especially for “chain-like”
graphs. Very difficult is to create automaton with tree-based transition graph than
a cyclic graph. Next work will focus on new crossover operator affected by
probability as well as mutation and other variants of fitness functions.

References

[1] Fogel L. J., Owens A. J., Walsh M. J.: Artificial Intelligence Through
Simulated Evolution, Wiley, New York, 1966

[2] Lucas S. M., Reynolds T. J.: Learning Deterministic Finite Automata with
a Smart State Labeling Evolutionary Algorithm, IEEE Transaction on
Pattern Analysis and Machine Intelligence, Vol. 27, No. 7, July 2005

[3] Holland J. H.: Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975

[4] Goldberg D. E.: Genetic Algorithm in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989

[5] Štěpánková a kol.: Umělá inteligence 3, 4, Academia, 2002, in Czech

[6] Fábera V.: The solving of „criss-cross“ crossword using genetic algorithm,
in Proceedings of “Informatika a Informačné technologie 2004”
Conference, Banská Bystrica, Slovakia, September 2004, in Czech

[7] Koza J. R.: Genetic Programming, MIT Press, Cambridge, MA, 1994

[8] Collins R., Jefferson D.: Representations for artificial organisms, in
Proceedings of the First International Conference on Simulation of
Adaptive Behavior, MIT Press, 1991

