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Abstract: It is well known that the result of some extension principle-based arithmetic
operations on trapezoidal fuzzy numbers is not trapezoidal. To avoid this shortcoming two
main approaches exist. The first one tries to approximate the resulting fuzzy number with
an appropriate trapezoidal one. The second one re-defines the arithmetic operations in a
way that results in trapezoidal fuzzy numbers directly. The aim of the present paper is to
give an overview of such recent approaches. At the end we compare the methods and give
some conclusion.
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1 Introduction

Fuzzy numbers are fuzzy subsets of the set of real numbers satisfying some
additional conditions. Fuzzy numbers allow us to modell non-probabilistic
uncertainties in an easy way. Arithmetic operations on fuzzy numbers have also
been developed, and are based mainly on the extension principle [15] or on
interval arithmetic [11]. When operating with fuzzy numbers, the result of our
calculations strongly depend on the shape of the membership functions of these
numbers. Less regular membership functions lead to more complicated
calculations. Moreover, fuzzy numbers with simpler shape of membership
functions often have more intuitive and more natural interpretation.



Thus, there is a natural need of simple approximations of fuzzy numbers that are
easy to handle and have a natural interpretation. Trapezoidal or triangular fuzzy
numbers are most common in current applications.

Considering the extension principle-based arithmetic operations on trapezoidal
fuzzy numbers, the product of two such fuzzy numbers is not of the same kind: the
shape of these fuzzy numbers is not preserved. In many situations this problem is
solved by approximating the result of the extension principle-based multiplication
by a triangular or trapezoidal number. In some other cases the arithmetical
operations are defined in a way that the results are always trapezoidal fuzzy
numbers.

The aim of the present paper is to give an overview of recent approaches to these
problems. After the necessary preliminaries we consider two groups of solutions.
Methods in the first one try to approximate a fuzzy number with a trapezoidal one.
Approaches in the second group re-define the arithmetic operations in a way that
results in trapezoidal fuzzy numbers directly. At the end we compare the methods
and give some conclusion.

2 Preliminaries

Let us recall the following well-known definition of a fuzzy number. The addition
of fuzzy numbers and multiplication of a fuzzy number by a crisp number are
provided by Zadeh's extension principle.

Definition 1 A fuzzy number is a function u : R —[0,1] with the following
properties:

(i) u isnormal, i.e., thereexists x, € R suchthat u(x,)=1

(i) u(Ax+(1-4)y)= min{u(x),u(y)},Vx, yeR,Vie[0,1];

(iii) u is upper semicontinuous on R, i.e., Vx,eR and Ve>O0 there
exists a neighborhood V (x,) suchthat u(x)<u(x,)+&,VxeV(X);

(iv) The set W(u) is compact in R, where supp(u) ={x e R;u(x)>0}.
We denote by R. the set of all fuzzy numbers.

Let abceR,a<b<c. The fuzzy number u:R—[01] denoted by

(a,b,c) and defined by u(x)=0 if x<a or x>c,u(x)=x2 if xe[a,b]

b-a

and u(x)=<% if xe[b,c] iscalled a triangular fuzzy number.



For 0<r<l and ueR. we denote [u] ={xeRu(x)>r} and
[u]0 ={X€R;U(X)>O}. It is well-known that for each re[0,1],Ju]” s a
bounded closed interval, [u]r =[g’,ﬁr] Let u,veR. and AeR . We define

the sum u+v and the scalar multiplication Au by
[u+v] =[u] +[v] = [gr v +7}
and

[zg’,/la’], if 1>0,
[au] =afu] =1¢ _
[ﬂu ,ﬁgr], if <0,

respectively, for every r <[0,1].
We denote by —u=(-1)ue R the symmetricof ueR..
The product u-v of fuzzy numbers u and v, based on Zadeh's extension

principle, is defined by

-r —=r , —r=r

(u-v)" =min{u"v',u'v ,uvi,uv}
=-r —r r -r-—r

e roror
(u-v) =max{u'v',u'v,uvi,uvl

Surely, the above formulas are not very practical from the computational point of
view. Also, let us remark that usually the fuzzy numbers which are used in
practical applications are trapezoidal. So, the requirement that a product operation
should be shape-preserving seems to be natural.

Definition 2 A fuzzy number ueR. is said to be positive if u' >0, strict
positive if u' >0, negative if U <0 and strict negative if U <0.We say that
u and v have the same sign if they are both positive or both negative.

Let uveR.. Wesaythat u<v if u"<v" and u <v forall re[0,1].
We say that u and v are on the same side of 0 if u<0 and v<0 or
O<u and O=<w.

Remark 1 If u is positive (negative) then —u is negative (positive).

Definition 3 For arbitrary fuzzy numbers u and v the quantity

D(u,v) = sup{max{lgr V"]

0<r<i

UV



is called the (Hausdorff) distance between u and v.

It is well-known (see e.g. [3]) that (R.,D) is a complete metric space and D
verifies D(ku,kv)=|k|D(u,v), Yu,veR., VkeR..
The so-called L - R fuzzy numbers are considered important in fuzzy

arithmetic. These and their particular cases triangular and trapezoidal fuzzy
numbers are used almost exclusively in applications.

Definition 4  ([4], p. 54, [3]) Let L,R : [0,+%)—[0,1] be two continuous,
decreasing functions fulfilling L(0)=R(0)=1L(1)=R(1)=0, invertible on

1

[0,1]. Moreover, let a  be any real humber and suppose g,g be positive

numbers. The fuzzy set u :R —[0,1] isan L - R fuzzy number if

L(%) fort<al

u(t)=

R(%) fort >a'.

Symbolically, we write u = (al,g,a)L . where a' is called the mean value of
u, g,a are called the left and the right spread. If u isan L - R fuzzy
number then (see e. g. [13])

[u] = [al ~-L*(r)a,a" + R‘l(r)a].

As a particular case, one obtains trapezoidal fuzzy numbers when the functions L
and R are linear. A trapezoidal fuzzy number u can be represented by the

quadruple (a,b,c,d)e R*, a<b<c<d. In this case the r -level sets are
given by u'=a+r(b—a) and u =d +r(d—c). If we have b=c in the
representation (a, b,c, d) , the fuzzy number is called triangular. Then we can use

the triple (a,b,d) only.

A trapezoidal fuzzy number (a,b,c,d) can also be represented by a quadruple
(mU,L,R), where m=(b+c)/2 isthe modal value, U =m-c is the upper

tolerance,and L=m-a and R=d-m are the left and right lower tolerances
respectively (see Figure 1).



Figure 1
Two representations of a trapezoidal fuzzy number

The r -level sets of a trapezoidal fuzzy number u :(mu,U L,,R ) are given as

ur=ur

follows:

[u] =[m, - L, +r(L, -U,),m, +R, +rU, -R))].

3 Trapezoidal Approximations

3.1 Conventional Fuzzy Arithmetic with Trapezoidal Fuzzy
Numbers

In conventional fuzzy arithmetic with u,veR., the arithmetic operations
oe{+,—,-,+} are defined by applying interval arithmetic to the r -level sets

[u] :[g',GrJ and [v]' :[y’,\_/r] of the fuzzy numbers. The sum and the

difference of two trapezoidal fuzzy numbers are also trapezoidal. The product and
the quotient are, however, of non-trapezoidal shape.

As an example, consider u=(0,2,4,6) and v=(2,38). Then

u+v=(25714) and [u-v]'=[6,12], [u-v]’ =[0,48], with membership
function shown in Figure 2.
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Figure 2
Actual product of (0,2,4,6) and (2,3,8)

3.2 Trapezoidal Approximation of the Conventional Product

In applications which use trapezoidal fuzzy numbers we often opt for
computational simplicity and calculate only the core [u-v]' =(6,12) and the

support [u-v]’ =(0,48) using interval methods. The resultant trapezoidal fuzzy
number (0,6,12,48) is then used for the approximation of the actual product in
Figure 2.

Repeated operations on fuzzy numbers using conventional fuzzy arithmetic may
have the effect of increasing the uncertainty with each successive operation. This
is inconsistent with the day to day experience and the intuitive way people handle
vague quantities [9].

3.3 Trapezoidal Approximation and Least Squares Fitting

Turning back to the just mentioned trapezoidal approximation of the product of
two trapezoidal fuzzy numbers, a very natural idea is to use linear approximations
of side functions based on classical least squares. Without going into details, it is
interesting to notice that the slopes of these least squares approximations are equal
to the respective slopes of the trapezoidal approximation determined by the core
and the support of the product. For more details and other results we refer to [5].

3.4 New Trapezoidal Approximation Preserving the Expected
Interval

As we have discussed in the previous sections, the usual (Zadeh's extension
principle-based) product does not preserve the shape of the operands. Thus, the



result of the product, for computational purposes has to be approximated by
trapezoidal number. A new, axiomatic approach has been introduced in [8]. We
will call the trapezoidal approximation of the product based on this method as new
trapezoidal approximation of the product.

The method proposed in [8] gives the best approximation of the product under
some appropiate conditions. These conditions are natural, so in the approximation
of the product the result obtained is motivated from the theoretical point of view.
Let us regard the trapezoidal approximation as an operator T, T : R - R,
which for a given fuzzy number u gives its trapezoidal approximation. The list
of requirements which have to be satisfied by an operator of this type are given in
[8] below.

1 Conserving some fixed « -cut. E.g. if the operator preserves the 0 and 1
level sets, then the old trapezoidal approximation is reobtained.

Invariance to translation of the operator T .
Invariance with respect to rescaling.

Monotonicity with respect to inclusion.

a b~ W N

Idempotency (i.e. the trapezoidal approximation of a trapezoidal number
is itself).

6 To be best approximation, that is, it should be the nearest in some
prescribed sence ( D(T (u),u) < D(x,u) for any trapezoidal number x).

7 Conserves the so-called expected interval, that is the original fuzzy
number and its approximation has the same expected interval (Let us

recall here that the expected interval of ueR. is [ tg’dr,ﬁ)ﬁrdr}).

8 Continuity.

9 Compatiblity with the extension principle.

10 Monotonicity with respect to some ordering between fuzzy numbers.
11 Invariance with respect to correlation. (see [7]).

In [8] the authors propose a trapezoidal approximation which is best
approximation and preserves the expected interval, that is conditions 6 and 7 are
required. In this case, for ueR. we obtain the trapezodal fuzzy number

(t,t,,t,,t,), where



t,= —Gﬁrg'dr+4j‘zgrdr,
1 r 1 r
t, =6I0rg dr—Zjog dr,
1 —r 1—r
t, :GIOru dr—Zjou dr,
t, = —GerGrdr+4jzﬁrdr.
In [8], the authors proved also that conditions 2,3,4,5,8,9,10,11 are fulfiled.

Moreover, the expected value of the fuzzy numbers (called also defuzzification by
the center of area method) is preserved.

4 New Operations Resulting in Trapezoidal Fuzzy
Numbers

4.1 The Cross Product

In this section we study the theoretical properties of the cross product of fuzzy
numbers. For more details see [1] and [2].

Let R ={ueR. : uispositive or negative} . Firstly we begin with a theorem
which was obtained by using the stacking theorem ([12]).
Theorem 1 If u and v are positive fuzzy numbers then w=uQ®v defined by

—r —_r 1 —1-r —1-1
[w] =[v_v',w ]Where w=u'v'+u'v' —u'v' and w =uv +uv —uv, for

—r =

every re[0,1], is a positive fuzzy number.

Corollary 1 Let u and v be two fuzzy numbers.

(i) If u ispositiveand v is negative then uOV=-(uO(-v)) isa negative
fuzzy number;

(ii) If u isnegativeand v is positive then uOV= —((—u)Ov) is a negative
fuzzy number;

(iii) If u and v are negative then uOV=(-u)O(-v) is a positive fuzzy
number.

Definition 5 The binary operation © on R: introduced by Theorem 1 and
Corollary 1 is called cross product of fuzzy numbers.



Remark 1) The cross product is defined for any fuzzy numbers in

R, = {u e R;; there exists an unique x, € R such that u(x, ) =1}, so implicitly for

any triangular fuzzy number. In fact, the cross product is defined for any fuzzy
number in the sense proposed in [6] (see also [13]).

2) The below formulas of calculus can be easily proved (r [0,1] ):

if u is negative and v is positive. In the last possibility, if u and v are
negative then

3) The cross product extends the scalar multiplication of fuzzy numbers. Indeed,
if one of operands is the real number k identified with its characteristic function
then k" =k =k, Vre [0,1] and following the above formulas of calculus we get

the result.
The following interpretation related to error theory is a further theoretical
motivation of the use of the cross product of fuzzy numbers. Indeed, the

consistency of the cross product with the classical theory motivates its use in the
case of modelling uncertain data (uncertainty being due to errors of measurement).

We introduce two kinds of errors of fuzzy numbers corresponding to absolute
error and relative error in classical error theory and we study these with respect to
sum and cross product.

Definition 6 Let u be a fuzzy number. The crisp number A[ (u) =u'—u" is

called r -errorto leftof u and the crisp number A;(u):ar —u iscalled r -

error to right of u, where re[0,1]. Thesum A"(u)=A| (u)+Ag(u) iscalled
r -error of u.



If u expresses the fuzzy concept A then A (u) and A;(u) can be

interpreted as the values of tolerance of level r from the concept A to left and
to right, respectively. For example, if the triangular fuzzy number u=(5,7,9)

expresses "early morning" then A%L (u)=1 (one hour) is the tolerance of level %
of u towards night from the concept of "early morning" and Ai (=05 (30

minutes) is the tolerance of level %+ of u towards moon from the concept of

"early morning".

A new argument in the use of addition of fuzzy numbers as extension (by Zadeh’s
principle) of real addition is the validity of the formula

A"(U+Vv)=A"(u)+A"(v),

which is consistent to the classical error theory. It is an immediate consequence of
the obvious formulas

AL (u+v) = AL (u) + AL (v)
and

Ag (U+V) = AL (U)+ AL (V).
Now, let us study the relative error of the cross product.

Definition 7 Let u be a fuzzy number such that u* =0 and U #0.The crisp

numbers 5[(u)=A‘[uf‘”) and 5g(u)=AF‘,§‘”) are called relative r -errorsof u to
C u

left and to right. The quantity &' (u) =4, (u)+65(u) is called relative r -error
of u.

Theorem 5 If u and v are strict positive or strict negative fuzzy numbers
then

5" (uov)=5"(u)+6"(v).
Corollary 2 If u s a strict positive fuzzy number then &7 (u®")=ns; (u),
S (u°")=nsy(u) and &' (u°")=ns" (u).
The above theorems show us that the cross product is consistent with the classical

error theory (the propagation of errors is governed by a similar law as in the
classical case).



4.2 New Arithmetic Operations on Trapezoidal Fuzzy
Numbers

In [10] a new set of arithmetic operations was introduced for L-R fuzzy
numbers. Now we consider its specification for trapezoidal fuzzy numbers. We
will employ representation (mal) here.

Let u=(m,U,L,R,) and v=(m,U,L,R,) be two trapezoidal fuzzy
numbers and consider any arithmetic operation o e {+,—,-,+} . By definition from
[10],
m,, =m, om,,
and
[m.. ] =[m,em, —L (u,v),m,om, +R (u,v)
with
L (u,v) =max{L, -r(L, -U,), L, -r(L, -U,)}
R, (u,v) =max{R, -r(R, -U,),R, - r(R, -U,)}.
This definition is illustrated in Figure 3, using fuzzy numbers u=(0,2,4,6) and
v=(2,3,8) as before.
1t
o]
0.6}
0.4}

0.2t

2 4 p 8 10 12 14
Figure 3
Multiplication of two trapezoidal fuzzy numbers using definition from [10]

As one can see easily, the result is not trapezoidal. Its side functions are piecewise
linear in general.



4.3 Simplified Operations on Trapezoidal Fuzzy Numbers

In [14], a simplification of Ma et al's definition was published. Essentially, it is
just the traditional trapezoidal approximation applied for Ma et al's result. More
formally, let u=(m,U,,L,,R,) and v=(m,U,L,R,) be two trapezoidal

u?r-u?
fuzzy numbers and consider any arithmetic operation o ¢ {+,—,~,+} . Then define
the extension of o as follows:

uov=(m, om,, max{U,,U } max{L,, L} max{R,,R }).

5 Comparisons

Now we compare four approaches outlined above: i) actual product (based on the
extension principle), ii) old trapezoidal approximation of the actual product, iii)
the cross product, iv) new trapezoidal approximation of the actual product.
Trapezoidal fuzzy numbers (1,5,8,10), (1,3,4,8) are considered, and the four

cases are illustrated in Figure 4. The solid vertical line and the dashed vertical line
represent the defuzzified values of the results by centroid and expected values
(center of area) methods, respectively.
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Figure 4
The product of two trapezoidal fuzzy numbers obtained by the different approaches discussed in the

paper
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Figure 4 does not show a striking difference between the results of the different
methods. However, the difference can be significant if we perform iterative
computations with fuzzy numbers. In order to show this we consider the
exponential functions obtained as power series with respect to the product type
operations discussed above. In Figure 5 the results of the exponential-type
functions are presented. The fuzzy number considered in the exponent is
(2.2,4.6,4.7,5). Solid thin line represent again defuzzification by centroid

method, while dashed line the expected value.

Exponential by using the cross product
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Figure 5
The exponential of a fuzzy number

Significant difference can be observed between the different results in this case.
Indeed, the iterative use of the product operations leads to different result even
after defuzzification. This problem can be avoided by considering and examining
all the operations in all the practical problems considered and taking them into
account there.

This figure suggests us also that we should be careful with the use of the cross
product in the construction of an exponential, since in some cases the result given
by this operation is negative, which can never be possible. The figure suggests that
probably the best behavior is that of the new trapezoidal approximation.

Also, we observe that after defuzzification (by centroid method) the result of the
cross product is usually smaller than that of the new trapezoidal approximation,
which is smaller at its turn than the old trapezoidal approximation of the product
however the results are not very different.



Conclusions and further research

New approaches for the multiplication of fuzzy numbers have been discussed both
from theoretical and practical point of view. As a conclusion of this research we
can state that the theoretical properties of the cross-product and the new
trapezoidal approximation motivate the usefulness of both methods. The most
conservative method is the old trapezoidal approximation. So, there exist reasons
for using all the above mentioned approaches and to take into account the results
of all approaches in applications (e.g., in risk analysis).

From the computational point of view, let us remark that the old trapezoidal
approximation and the cross product can be computed in an easy way taking into
account only the endpoints of the core and support of the trapezoidal operands and
the extension principle may be avoided in these cases. In the case of the new
trapezoidal approximation, since the implementation of this operation involves the
use of the extension principle and then numerical integration on the side-functions
of the fuzzy numbers, the computational complexity is high. This makes almost
impossible to use the new trapezoidal approximation in iterative computations.

For further research we propose effective implementation of the new trapezoidal
approximation, and the design of new computationally tractable methods for the
approximation of the product based on the extension principle.
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