
A Note on Integral Equivalence 

Alexander Haščák, Jozef Kondáš 
Department of Mathematics, Faculty of Electrical Engineering and Informatics, 
Technical University of Košice, B. Němcovej 32, 041 20 Košice, Slovakia 
e-mail: Alexander.Hascak@tuke.sk, Jozef.Kondas@tuke.sk 

Abstract. In the note is given a new sufficient condition for a integral equivalence of a 
linear differential system and its nonlinear perturbation. 

In [4] the following notion was defined: 

Let two systems of differential equations 

),( xtFx =′  (1) 

and 

),( xtGy =′  (2) 

be given. Suppose that F and G are such that they guarantee the existence of 
solutions of (1) and (2), respectively, on the infinite interval )∞,0 . 

Let Ψ(t) be a positive continuous function on an interval )∞,0t  and let p > 0. 

We shall say that two systems (1) and (2) are (Ψ, p)-integral equivalent on 
)∞,0t  if for each solution x(t) of (1) there exists a solution y(t) of (2) such that 

),()()()( 0
1 ∞∈−Ψ− tLtytxt p  (3) 

and conversely, for each solution y(t) of (2) there exists a solution x(t) of (1) such 
that (3) holds. 

By restricted (Ψ, p)-integral equivalence between (1) and (2) we shall mean that 
relation (3) is satisfied for some subsets of solutions of (1) and (2), e.g. for the 
bounded solutions. 

In this paper we shall use a topological method of Wazewski to discuss this 
problem. Now we shall define some notions and give preliminary results which 
will be needed in the sequel. 



Hypothesis H. The system 

( , )x F t x=& , (4) 
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satisfies the hypothesis H if 

i) the real-valued functions ),( xtFi ,  i = 1, … , n  of the real variables 

t, nxx ,,1 L  are continuous in the set 1+⊂Ω nR , 

ii) through every point Ω∈= ),( 000 xtP  passes only one integral 

curve ),( 0Ptx  of the system (4). 

Let ω and Ω be open sets of Rn+1 with Ω⊂ω  and let us denote by ),( ΩωB  

the boundary of ω in Ω. Let Ω∈= ),( 000 xtP . Denote 

)),(,(:),( 00 PtxtPtI =  where ),( 0Ptx  is the integral curve of the system (1) 

passing through the point 0P . 

Let ))(),(( 00 PP βα  be the maximal open interval in which the integral curve 

passing through 0P  exist. We shall write 

})),(,{(:),( 00 Δ∈=Δ tPtxtPI  

for every ))(),(( 00 PP βα⊂Δ . 

The point ),(),( 000 Ω∈= ωBxtP  is a point of egress from ω (with respect to 

the system (4) and the set Ω) if there exists 0>δ  such that 
ωδ ⊂− )),,[( 000 PttI ; 0P  is a point of strict egress from ω if 0P  is a point 

of egress and if there exists 0>δ  such that ωδ \)],,(( 000 Ω⊂+ PttI . The 

set of all points of egress (strict egress) is denoted by ( )S S ∗ . 

If A and B are any two sets of a topological space with BA ⊂  and if 
AB →:π  is a continuous mapping from B into A such that PP =)(π  for 

every P∈ A, then π is a retraction from B into A, and A is a retract of B. 

Wazewski’s first theorem (T. Wazewski [6]). Suppose that the system (4) and 
the open sets 1+⊂Ω⊂ nRω  satisfy the following hypotheses: 



i) hypothesis H 

ii) ∗= SS  

iii) there exists a nonempty set SZ ∪⊂ω  such that SZ ∩  is a retract of S, 
but it is not a retract of Z. 

Then there exists at least one point SZxtP −∈= ),( 000  such that 

ω⊂),( 0PtI  for every t, )( 00 Ptt β<≤ . 

Let ),(),,,(),( 1
1 RCxxtgxtgg n Ω∈== L  i.e. let g be a real-valued 

function defined on 1+⊂Ω nR , first partial derivatives of which exists and are 
continuons on Ω. 

Let Ω∈= ),( 000 xtP  and let x(t) be the integral curve of the system (4) passing 

through the point 0P . We set ))(,(:)( txtgt =Φ . 

The derivative of g(t,x) at the point ),( 000 xtP =  with respect to the system (4) 

is by definition ( )tΦ&  and is denoted by 
0

)]([ )4( PPgD . 

Let ),( xtl i  and ),( xtm j  ),,1;,,1( qjpi LL ==  be real-valued functions 

belonging to C1 on an open set 1+⊂Ω nR . 

Let 

: { ( ) 0, 1, , ; ( ) 0, 1, , }i jP l P i p m P j qω = ∈Ω < = < =L L , 

: { ( ) 0, ( ) 0, 1, , , ( ) 0, 1, , }i i k jL P l P l P k p m P j q= ∈Ω = ≤ = ≤ =L L

: { ( ) 0, 1, , , ( ) 0, ( ) 0, 1, , }j i j kM P l P i p m P m P k q= ∈Ω ≤ = = ≤ =L L

The set ω is called a regular polyfacial set, if 

piPlD iLP
i ,,1,0)]([ )4( L=>

∈
 and (4)[ ( )] 0, 1, ,j

j
P M

D m P j q
∈

< = L . 

Wazewski’s second theorem (T. Wazewski [6]). Let the system (4) satisfies the 
hypothesis H on a open set 1+⊂Ω nR . Let Ω⊂ω  be a regular polyfacial set. 

Then  
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Lemma 1  (A. Haščák [2]). Let 0g ≥ be a continuous function on 0 t≤ < ∞  

and such that 
1

0

( ) , 1ps g s ds p
∞

< ∞ ≥∫ . 

Then ( ) (0, ),p
t

g s ds L p p
∞

′ ′∈ ∞ ≥∫ . 

Next we will consider special systems 
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and 
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=
n

j
jiji yay

1

& . (6) 

We will always suppose that the systems (5) and (6) satisfy the hypothesis H in 
Γ×∞),[T , where nR⊂Γ  is an open set. || ⋅  denotes any convenient matrix 

(vector) norm. 

Theorem 1  Suppose )(tyy = , Tt ≥  is a given solution of (6) and there exist 

an 0>ε  and a Tt ≥0  such that 

Γ×∞=Ω⊂<−∈×=
≥

),(}|)(||{}{:
0

0 ,, TtyxRxtw
tt

n
yt U εε . 

If there exist continuous functions njth j ,,1),( L=  such that 

ytjj wxtthxtf ,, 0
),(),(|),(| ε∈≤  

and if 
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Then there exists 01 tt >  and a solution )(tx  of (1) defined on ),1 ∞< t  such 

that 1| ( ) ( ) | ( , )px t y t L t− ∈ ∞ . 

Proof. Let 1( ) ( , )i pt L tΦ ∈ ∞  for 1 , 1, ,p i n≤ < ∞ = L  be such that 

i) nitti ,,1,0,0)( L=≥>Φ . 

ii) )(tiΦ are differentiable and nitit
,,1,0)(lim L==Φ

∞→
. 

Thus there is ),1 ∞∈< Tt  such that ∑
=

≥<<Φ
n

i
i ttt

1
1,1)( ε . 

Now we define the set ω by the formula 

1: { | | ( ) | ( ), , 1, , }i i iP x y t t t t i nω = ∈Ω − < Φ ≥ = L . 

If we put nittyxPl iii
i ,,1),(|)(|:)( 22 L=Φ−−=  and 

ttPm −= 1
1 :)( , then 

niPlP i ,,1,0)(|{ L=<Ω∈=ω  and }0)(1 <Pm . 

Further let us define the sets niLi ,,1, L=  and 1M  by the formulas 

1: { | | ( ) | ( ), | ( ) | ( ), 1, , , }i
i i i j j jL P x y t t x y t t j p t t= ∈Ω − = Φ − ≤ Φ = ≥L

}),(|)(||{: 1
1 ttttyxPM iii =Φ≤−Ω∈= . 

For the solution 1),( tttx ≥  of (5) we have 

( ) ( )( )21 , ( ) | ( ) ( ) | ( ) ( ) ( ) ( ) ( ) ( )
2
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j i

l t x t x t y t a t a t x t y t x t y t
≠

= − + − − +∑&

( )( , ) ( ) ( ) ( ). ( ), 1,i i i i if t x x t y t t t i n+ − −Φ Φ =& L  

and thus 2
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∑
≠

−ΦΦ−Φ≥ΦΦ−
ij

jiijiiiii tttatattt )().(|)(|)().()().( 2&

∑
≠

−Φ−ΦΦ=ΦΦ−Φ−
ij

jijiiiiiiii ttattattttxtf )(|)(|)().()[()().()(|),(| &

)]()()().()[()](|),(| tttatttxtf iiiiiii γ−Φ−ΦΦ≥Φ−− && , 

where ∑
≠

+=
ij

iji tatht |)(|)(:)(γ . 

In order to be (5)[ ( )] 0, 1, ,iD l P i n> = L  it is sufficient to choose 

niti ,,1),( L=Φ  such that 0)()()()( >−Φ+Φ− tttat iiii γ& . 

The problem is to find a solution )(tz  of 

)()()()( ttztatz ii γ−<&  (9) 

such that ( ) 0, ( ) (0, )pz t z t L> ∈ ∞  and 0)(lim =
∞→

tz
t

. 

The function ∫
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t
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)(

).(:)(  is a solution of the equation 

)()()()( thtutatu iii −=&  such that 0)(lim,,0)( 1 =≥>
∞→

tutttu
t

 and (by 

(7)) ),()( 1 ∞∈ tLtu p . 

Moreover the function 

( )

( ) : | ( ) |

t

iia s ds

j ij
t

v t a t e dτ τ
∞ ∫

= ∫ , {1, , 1, 1, , }j i i n∈ − +L L  

is a solution of the equation 

( ) ( ). ( ) | ( ) |j ii i ijv t a t v t a t= −&  , {1, , 1, 1, , }j i i n∈ − +L L  such that 

1( ) 0, , lim ( ) 0j jt
v t t t v t

→∞
> ≥ =  and by (8) 1( ) ( , )j pv t L t∈ ∞ . 

Thus the function 1( ) : ( ) ( ),i
j i

w t u t v t t t
≠

= + ≥∑  is solution of the equation 

∑
≠

−−=
ij

ijiii tathtwtatw |)(|)()()()(&  (10) 



such that 0)(lim,,0)( 1 =≥>
∞→

twtttw
t

. 

Further, by Holder’s inequality we have 1( ) ( , )pw t L t∈ ∞ . 

Moreover from (10) we have 

<⎟⎟
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+−= ∑

≠ij
ijiii tathtwtatw |)(|)(2)()(2)(2 &  

∑
≠

−−<
ij

ijiij tathtwta |)(|)()()(2 , 

i.e. the function )(2)( twtz =  is a solution of (9) with required property. 

Now (since 1)](,[ 1
1

)5( −=
∈MP

PmD ) it follows from Wazewski’s Second 

Theorem, that ω is a polyfacial set and 1
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Let Z be the set 
1

1: {( , ) | , | ( ) | ( ), 1, , }n
j j jZ t x R t t x y t t j nτ+= ∈ = > − ≤ Φ = L . 

Then 1

1
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U , where 

iL Z∩ =  

{( , ) | , | ( ) | ( ), | ( ) | ( ), 1, , }i i i j j jt x t x y x y j nτ τ τ τ τ= = − = Φ − ≤ Φ = L

Thus nBBZ ××= L1 , where ,jB  are the balls in 1R , and 

U LL
n

j
njj BBSBZS

1
11

=
+ ×××××=∩ , where jS  is a boundary of jB  in 

R . 

Also, modulo homeomorphisms, nBZ =  (a ball in nR ) and SZ ∩  is the 
boundary of nB  in nR . Thus SZ ∩  is not a retract of Z . On the other hand, 
since the function ZSS ∩→:π  defined by 

1: ( , , , )nt x xπ →L  



1
1 1 1

1

( )( )
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n

y x y t y x y t
t t

ττ
τ τ τ

⎞⎛ ΦΦ
→ + − + − ⎟⎜ Φ Φ⎝ ⎠

L  

is a retraction, i.e. SZ ∩  is a retract of S . 

By Wazewski’s First Theorem there is at least one point SZxP \),( 00 ∈∈ τ  

such that ( ) τω ≥⊂= tPtIPtxt ,),(),(, 00 . 

It must be that ∞=)( 0Pβ  because otherwise 

0 0{ ( , ) | ( )} [ ] 0I t P t Pτ β ω≤ < ∩ Ω − ≠ / , which is not possible. 

Consequently, ( )),(,),,(),( 0010 PtxPtxPtx nL=  is defined in ),[ ∞τ , and 

such that | ( ) ( ) | ( , ), 1, ,i i px t y t L i nτ− ∈ ∞ = L . 

Moreover, if ( )||,|,|max:|| 1 nxxx L=  for nRx∈ , then 

∞<−≤−∫ ∫∑
∞

=τ τ

n

i

p
ii

p dttytxdttytx
1

|)()(||)()(| . 

The proof of the theorem is complete. 

In the next ( )U t  will denote a fundamental matrix of (6). 

Corollary 1.  Suppose that the following conditions hold: 

i) all solutions of (6) are defined and bounded on ),[ ∞T , 

ii) in the system (5), ),( xtf  is defined on [ , ) nT R∞ × , 

iii) for every constant M  and some Tt >0 , there exists a continuous real-

valued function )(thM  such that 

1
0( ) | ( ) | ( , )M p

t

h s U s ds L t
∞

− ∈ ∞∫  

and )(|),(| thxtf M≤  for all ),( xt  with Mxtt ≤> ||,0 . 

Then for every solution )(ty  of (6) there is a solution )(tx of (5) such that 

1| ( ) ( ) | ( , )px t y t L t− ∈ ∞ . 



Proof. Using the transformations )().()(),().()( tvtUtytztUtx ==  

in the systems (5) and (6), we get 

( ) ),(:)()(,)()( 1 ztgtztUtftUtz == −& , (11) 

and 

0)( =tv& . (12) 

Further, by the hypothesis i) there exists a constant K such that KtU ≤|)(| , for 

0t t T≥ ≥ . Clearly | ( ) ( ) | | ( ) ( ) |x t y t K z t v t− ≤ − . 

Thus to prove that for every solution )(ty  of (6), there is a solution )(tx of (5) 

such that 0| ( ) ( ) | ( , )px t y t L t− ∈ ∞ , it is enough to prove 

0| ( ) ( ) | ( , )pz t v t L t− ∈ ∞ . 

We have ( ) )(|)(||)(,|.|)(||),(| ~
11 thtUztUtftUztg M
−− ≤≤ ,  0tt ≥  

for Mz ≤|| , where KMM =~
 and by hypothesis 

1
0| ( ) | ( ) ( , )M p

t

U s h s ds L t
∞

− ∈ ∞∫  

holds. Now the existence of solution )(tz  of (11) with required property follows 
from Theorem 1 applied to the systems (11) and (12). 

From Corollary 1 and Lemma 1 we have: 

Corollary 2.  Assume that the assumptions of Corollary 1 are satisfied except ii) 
which is substituted by the condition 

iv) for every constant M and some 0t T> , there exists a continuous real-valued 

function ( )Mh t such that 
1

1| ( ) | ( ) |p
M

t

s h s U s ds
∞

− < ∞∫  and 

)(|),(| thxtf M≤ , for all ),( xt  with Mxtt ≤> ||,0 . 

Then the conclusion of Corollary 1 holds true. 

Theorem 2. Assume that the assumptions of Corollary 2 are satisfied. Then for 
every bounded solution ( )x t  of (5), there exists a solution ( )y t  of (6) such that 

0| ( ) ( ) | ( , )px t y t L t− ∈ ∞ . 



Proof. Let ( )x t  be a solution of (5) such that 0| ( ) | ,x t M t t≤ ≥ . Let us 

consider the solution ( )y t%  of (6) definited by the integral equation 

( )
0

1( ) ( ) ( ) ( ) , ( )
t

t

x t y t U t U s f s x s ds−= + ∫% . 

Clearly, ( )1 1
0| ( ) , ( ) | | ( ) | ( ),MU s f s x s U s h s s t− −≤ ≥  and by iv) of 

Corollary 2. we have ( )
0

1| ( ) , ( ) |
t

U s f s x s ds
∞

− < ∞∫ . 

Therefore, 

( ) ( )
0

1 1( ) ( ) ( ) ( ) , ( ) ( ) , ( )
t

t

x t y t U t U s f s x s ds U s f s x s ds
∞

− −

∞

= + + =∫ ∫%  

( )1( ) ( ) , ( )
t

y t U s f s x s ds−

∞

= + ∫ , where ( )y t  is a solution of (6). 

From the assumption iv) of Corollary 2 and Lemma 1 it follows that 

0| ( ) ( ) | ( , )px t y t L t− ∈ ∞ . 

The proof of Theorem 2 is complete. 

Theorem 3  Suppose that the assumptions i) and iii) of Corollary 2 are satisfied 
and further suppose that 

v) for every constant 0M >  and some 0t T>  there exists a continuous real-

valued function ( )Mh t  such that 

0

1

0

1 ( )

( ).

t n

jj
jt

a s ds
p

M
t

t h t e dt=

∞ ∑∫
< ∞∫  and 

)(|),(| thxtf M≤ , for all ),( xt  with Mxtt ≤> ||,0 . 

Then the sets of bounded solutions of (5) and of (6) are (1, p)-integral equivalent. 

Proof.  From the Jacobi-Liouville formula 10

( )

0det ( ) det ( )

t n

jj
jt

a s ds

U t U t e =
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= , 

it follows that 

0

1

( )
1 1

0| [det ( )] | | [det ( )] |

t n

jj
jt

a s ds

U t U t e =− −
∑∫

= . 



Since 1 1( ) [det ( )] ( )U t U t adjU t− −=  and hypothesis i) implies that adj U(t) is 

bounded, it is clear that 1 1| ( ) | | [det ( )] | . | ( ) |U t U t adjU t− −= =  
0 0

1 1

( ) ( )
1| [det ( )] | . | ( ) | .

t tn n

jj jj
j jt t

a s ds a s ds

U t adjU t e K e= =−
∑ ∑∫ ∫

= ≤ , for some constant 

K . Therefore 
0

1
1( ) | ( ) |p

M
t

t h t U t dt
∞

− < ∞∫ . 

Now the conclusion of Theorem 3 follows from Corollary 2 and Theorem 2. 
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