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Abstract: Several factors affect the performance of a web application. In this paper, the 
effects of two configurable settings of the J2EE application server are discussed: the 
maximum size of the thread pool and the maximum size of the connection queue. The 
response time, throughput and error rate of a web application are measured under different 
client load, while changing these settings. The results are primarily analyzed in a 
qualitative manner which is followed by quantitative reasoning based on a queueing model 
of the system. Our experiments show that both tuning parameters have a considerable 
impact on the performance metrics, and both of them should be taken into account when 
constructing a performance model of a web application. 
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1 Introduction 

At the early stage of the Internet, the Web was mainly used to display static 
content. As the Web became more and more widespread, several companies 
realized that web applications that are able to provide dynamic content can offer a 
strong support for their activities. Managing business processes, the improper 
performance of a web application can cause serious financial loss to a company. 
The performance-related requirements of an Internet application are often 
recorded in a Service Level Agreement (SLA). SLAs can specify an upper limit 
for the average response time, a lower limit for availability, while the application 
guarantees a certain throughput level. 

These performance metrics depend on several factors, such as hardware, software, 
network, and client workload. This paper focuses on the settings of the application 
server software that serves the HTTP requests of the browsers. More precisely, the 



performance of a test web application is measured under different client load with 
different values of two parameters of the application server. These tuning 
parameters are the maximum size of the thread pool, and the maximum size of the 
HTTP connection queue. To understand the meaning of these parameters, consider 
Figure 1. 

In the application server, accepted HTTP connections are placed into a connection 
queue. The size of the connection queue is limited by an adjustable parameter of 
the given application server. When this limit is reached, it is denied to serve the 
request. The threads in the thread pool take connections from the queue and serve 
the requests. The server can decide to create more threads (i. e. increase the size of 
the thread pool), but cannot exceed a certain configurable maximum. When the 
maximum thread pool size is reached, however, the requests are not dropped, as 
long as they find free space in the connection queue. The policy for adding new 
threads is typically based on the state of the connection queue. For more 
information refer to [1]. 

The limit for the size of the thread pool is necessary for controlling the memory 
usage of the applications. When the memory requirements of serving a request is 
known, the maximum memory usage of a web application can be set to fit in the 
physical memory in order to prevent thrashing because of the size limit of the 
thread pool. It is important to mention that not all the application servers allow 
manipulating both of the settings. 

Figure 1 
The connection queue and the thread pool 

The rest of this paper is organized as follows. Section 2 reviews the related work. 
Section 3 contains the process of the performance measurement and discusses the 
results, including our proposed performance model. Finally, we draw conclusions. 
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2 Related Work 

Several papers and research projects are engaged in studying how the various 
configurable parameters affect the performance of web applications. Two 
approaches for evaluating the impact of these parameters are presented in [2] and 
in [3]. They use statistical methods, hypothesis testing in order to retrieve the 
software parameters that influence the performance. [3] investigates the average 
response time only, while [2] also takes the throughput and the probability of 
rejecting a request into consideration. 

Some industry-standard benchmarks address standardizing the evaluation of 
application servers. In the field of Java 2 Enterprise Edition, ECPerf [4] and its 
successor, SPECjAppServer [5] are the most popular benchmarks. TPC-W [6] is a 
benchmark that is not tied to any particular implementation technology. 

Performance measurements can serve as the basis for performance modeling and 
prediction. In the past few years several techniques and methods have been 
proposed to address this goal. A group of them are based on queueing networks 
[7], or extended or layered versions of queueing networks. These methods 
establish a queueing network model of the system. By solving this model with 
analytical methods or simulation, the prediction of performance metrics is 
possible. Some of the proposed methods generate a queueing network model of 
the system based on its UML model [8][9]. In [10], a queueing model for multi-
tier internet applications is presented, where queues represent different tiers of the 
application. The model faithfully captures several aspects of web applications, like 
caching and concurrency limits at the tiers. The maximum size of the connection 
queue, as presented earlier, can be considered as a concurrency limit of the web 
tier in this model, but it cannot handle the maximum size of the thread pool. 

Another group of performance modeling techniques uses Petri-nets or generalized 
stochastic Petri nets, such as [11]. Petri nets can represent blocking and 
synchronization aspects much more than queueing networks, which are more 
suitable for modeling resource contention and scheduling strategies. A powerful 
combination of the queueing network and the Petri net formalism is presented in 
[12]. Using queueing Petri nets, the authors successfully model the performance of 
a web application, considering the maximum size of thread pools. Their model, 
however, does not take the maximum size of the connection queue into account. 

This paper shows that the limits configured both for the connection queue and the 
thread pool have a considerable effect on the performance. 



3 Contributions 

3.1 The Performance Measurement 

The test web application is intentionally designed to be very simple, such that no 
factors other than the settings of the application server can influence the 
performance. It can serve one type of HTTP requests, and is implemented with a 
Java servlet. On processing a request, it performs double precision computations, 
and periodically inserts sleep() calls. This emulates typical web applications, 
which use the processor of the machine that hosts the web container and calls 
services on other machines (e.g. a database server) in a synchronous way, which 
blocks the caller thread. The number of computations and the total sleep time can 
be defined as parameters of the request. After processing a request, the web 
application generates a small html file (of approximately 10 kilobytes) as a 
response. 

The application server (Sun Java System Application Server Enterprise Edition 
8.1) runs on a PC with Windows XP, and a 3 GHz Pentium 4 HyperThreading 
processor and 1 GB memory. The emulation of the browsing clients is performed 
by an open source load tester, JMeter, which runs on another PC, with similar 
hardware. The two machines are connected via a 100 Mbit/s LAN. 

Each test takes 20 minutes, during which the virtual clients send their requests to 
the server. Each virtual client inserts an exponentially distributed thinking time 
between its requests with mean 4 seconds. The virtual clients are started gradually, 
in a 40 seconds interval. The system reaches a steady state after 2 minutes in terms 
of average response time and throughput. Between two test runs, the application 
server is restarted because the new settings have to be reloaded. The values of the 
two investigated tuning parameters, and the numbers of the emulated clients 
during the individual measurements are summarized in Table 1. With these values, 
we expect that both the saturation of the thread pool and of the connection queue 
can be observed. 
 

Maximum size of the 
thread pool 30, 100 

Maximum size of the 
connection queue 50, 200 

Number of emulated 
clients 

10, 20, 30, 40, 50, 60, 
70, 80, 90, 100 

Table 1 
Number of clients and values of the tuning parameters during the measurements 



3.2 The Results 

During each measurement, the following metrics were registered: 

• The average response time of the requests, measured at the clients. This 
includes the network time of sending the request and receiving the response, 
but this time it is negligible, since these files are small, moreover, the client 
and the server are on the same local network. This is verified by comparing 
the client side response time to the response time measured at the server side. 
The two values differ less than 5 percent, thus, the time of the server side 
processing dominates the client side response time in our experiments. 

• The throughput of the system, which is the number of served requests in a 
second. 

• The rate of requests that are dropped by the server. 

• The processor and memory usage of the server and the machine running the 
clients. We found that the memory usage does not reach the 80% of the 
available physical memory on either of the machines. The processor usage on 
the client machine never reaches 60 percent, therefore, it cannot be a 
bottleneck in our measurements. 

Hereafter the measured response times are presented first. The JMeter tool can log 
the average response time of all requests (Rall), and the average response of the 
unsuccessful requests (Rerror). The average response time of the successful requests 
(Rsucc) can be derived as follows. Let e denote the rate of unsuccessful requests, n 
the total number of requests during a measurement. Then equation (1) holds. 

succerrorall RenRenRn ∗−∗+∗∗=∗ )1(   (1) 

This suggests that 
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R errorall
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The values computed with Equation (2) are depicted in Figure 2. As one can see 
from the two overlapping lines, the maximum size of the thread pool does not 
influence the response time when 200 connections are allowed. With maximum 50 
connections, however, the maximum size of the thread pool has a significant effect 
on the response time: the configuration with 100 threads performs better than the 
one with 30 threads. Our other observation is that for more than 60 clients, if we 
limit the connection queue to 50, it is possible to achieve better response time than 
that with 200 connections allowed. The reason of this phenomenon can be 
explained considering the rate of the unsuccessful requests in Figure 3. 



Average response time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Num ber of clients

A
ve

ra
ge

 re
sp

on
se

 ti
m

e 
(m

s)
30 Threads, 50 ConnQ 100 Threads, 50 ConnQ

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ

 
Figure 2 

The average response time in the various configurations 

It can be seen that with maximum connection queue size of 200, all the requests 
are successfully served. This is the expected behavior, since all the clients wait for 
the response to their current request before sending a new one. In this way, it is 
impossible not to serve a request due to a full connection queue, since the number 
of clients never exceeds the maximum connection queue size of 200. With the 
connection queue sized at 50, however, dropping requests is expected, when the 
number of clients exceeds 50. Figure 3 confirms this expectation: the two 
configurations with the maximum connection queue of 50 have a non-zero rate of 
unserved requests. Because a considerable part of the requests does not consume 
the resources of the server, a better performance can be guaranteed for the rest of 
the requests. It is notable that the error rate is higher for 100 threads than for 30 
threads, supposedly due to the increased contention between the threads. 

Figure 4 illustrates the throughput measured during the experiments. The curves 
are virtually identical in the different configurations and they saturate around 7 
requests/sec. This means, that with 50 connections, although dropping a notable 
part of the requests (see Figure 3), the improvement in the average response time 
of the served requests reaches a degree that compensates the negative effect of the 
increased error rate. 
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Figure 3 

The rate of unsuccessful requests in the various configurations 
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Figure 4 
Throughput of successful requests in the various configurations 

3.3 Performance Reasoning 

To meet the performance requirements of Service Level Agreements, the 
performance metrics of a system under given conditions can be obtained in two 
ways. The first method is load testing which was presented in the previous 



sections. The other method is to establish an analytical performance model of the 
system which can provide an estimation of the relevant performance metrics. 

In this section we apply a queueing model of the performance and validate it 
against the results of the load testing. To specify a queueing system, it is necessary 
to identify following parameters. The distribution of the interarrival time (the 
think time introduced by the virtual clients) is exponential with mean 4 seconds 
(Z). The exact distribution of the service time is unknown, but to keep our model 
simple, we will assume an exponential distribution with mean 0.14 seconds (S) 
based on measurements using one virtual client. The service rate µ is defined as 
1/S. The number of servers is one, the popoulation size (K) is equal to the number 
of virtual clients. The system capacity (B), i.e. the maximum number of requests in 
the system is equal to the maximum size of the connection queue, because a 
request in the connection queue remains there until the request is served. 

Using these parameters, our queueing system can be described using Kendall 
notation: M/M/1/B/K, where M stands for memoryless, a well-known property of 
the exponential distribution. To solve this system, we should first calculate the 
probability that there are k requests at the server (pk), using (3) and (4). A 
derivation of these formulas can be found in [13]. 
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Based on these results, all other performance metrics are easy to compute, using 
some basic results of queueing theory. The requests are dropped, when the system 
reached its capacity B, hence, the error rate e=pB. The throughput of the system 
(X) can be calculated based on the Utilization Law which states X=U/S, where U 
is the utilization of the server i.e. the probability that the server is busy, so U=1-
p0. And finally, we obtain the average response time from Little’s Law: R=N/X, 
where N is the average number of request in the system, that is: 

∑
=

=
B

k
kpkN

0
*  (5) 

The performance metrics obtained from this model are compared to the measured 
values in the figures below. The throughput values obtained from the model are 
virtually the same for 50 and 200 connection queue size, thus, they are presented 
together in Figure 5. The model slightly overestimates the measured values, but 
the fit is sufficiently accurate. 
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Figure 5 

Comparing the model with the measured data – throughput 

Since with a maximum connection queue size of 200, the error rate is zero both for 
the measured configurations and in the model, this case is not depicted. When the 
connection queue is limited to 50, the model provides values that are between the 
measured values for maximum 30 and 100 threads (Figure 6). This is due to the 
fact that our model does not model the thread limits. 
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Figure 6 
Comparing the model with the measured data – error rate 



The curves for the average response times are quite different depending on the 
connection queue size, and they are considered separately in Figure 7 and 8. In 
both cases the model overestimates the response time, but the nature of the curve 
is captured for both cases. With maximum 50 connections, the effect of the thread 
pool which is not included in our model becomes considerable which explains the 
larger deflection from the measured values. 
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Figure 7 
Comparing the model with the measured data – average response time with 200 ConnQ 
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Figure 8 
Comparing the model with the measured data – average response time with 50 ConnQ 



Conclusions 

This paper presented the results of a performance measurement that focused on 
two settings of the application server. We state that by limiting the maximum size 
of the connection queue, better response time can be achieved, but with higher 
error rate, while maintaining the same throughput. We have also shown that 
increasing the limit of the thread pool size results in an increased error rate and 
decreased response time when the number of clients exceeds the maximum size of 
the connection queue. The simple queueing model proposed in this paper is able to 
quantitatively capture the effect of the maximum size of the connection pool. 
Extending the model with the thread pool is subject of future work, similarly to 
testing the relevance of the model with more complicated web applications. 
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