
Measuring and Modelling the Effect of
Application Server Tuning Parameters on
Performance

Gábor Imre, Ágnes Bogárdi-Mészöly, Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of
Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
gabor@aut.bme.hu, agi@aut.bme.hu, hassan@aut.bme.hu

Abstract: Several factors affect the performance of a web application. In this paper, the
effects of two configurable settings of the J2EE application server are discussed: the
maximum size of the thread pool and the maximum size of the connection queue. The
response time, throughput and error rate of a web application are measured under different
client load, while changing these settings. The results are primarily analyzed in a
qualitative manner which is followed by quantitative reasoning based on a queueing model
of the system. Our experiments show that both tuning parameters have a considerable
impact on the performance metrics, and both of them should be taken into account when
constructing a performance model of a web application.

Keywords: Performance evaluation, Web technologies, thread pool, connection queue

1 Introduction

At the early stage of the Internet, the Web was mainly used to display static
content. As the Web became more and more widespread, several companies
realized that web applications that are able to provide dynamic content can offer a
strong support for their activities. Managing business processes, the improper
performance of a web application can cause serious financial loss to a company.
The performance-related requirements of an Internet application are often
recorded in a Service Level Agreement (SLA). SLAs can specify an upper limit
for the average response time, a lower limit for availability, while the application
guarantees a certain throughput level.

These performance metrics depend on several factors, such as hardware, software,
network, and client workload. This paper focuses on the settings of the application
server software that serves the HTTP requests of the browsers. More precisely, the

performance of a test web application is measured under different client load with
different values of two parameters of the application server. These tuning
parameters are the maximum size of the thread pool, and the maximum size of the
HTTP connection queue. To understand the meaning of these parameters, consider
Figure 1.

In the application server, accepted HTTP connections are placed into a connection
queue. The size of the connection queue is limited by an adjustable parameter of
the given application server. When this limit is reached, it is denied to serve the
request. The threads in the thread pool take connections from the queue and serve
the requests. The server can decide to create more threads (i. e. increase the size of
the thread pool), but cannot exceed a certain configurable maximum. When the
maximum thread pool size is reached, however, the requests are not dropped, as
long as they find free space in the connection queue. The policy for adding new
threads is typically based on the state of the connection queue. For more
information refer to [1].

The limit for the size of the thread pool is necessary for controlling the memory
usage of the applications. When the memory requirements of serving a request is
known, the maximum memory usage of a web application can be set to fit in the
physical memory in order to prevent thrashing because of the size limit of the
thread pool. It is important to mention that not all the application servers allow
manipulating both of the settings.

Figure 1
The connection queue and the thread pool

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 contains the process of the performance measurement and discusses the
results, including our proposed performance model. Finally, we draw conclusions.

Application server

Connection

Thread

2 Related Work

Several papers and research projects are engaged in studying how the various
configurable parameters affect the performance of web applications. Two
approaches for evaluating the impact of these parameters are presented in [2] and
in [3]. They use statistical methods, hypothesis testing in order to retrieve the
software parameters that influence the performance. [3] investigates the average
response time only, while [2] also takes the throughput and the probability of
rejecting a request into consideration.

Some industry-standard benchmarks address standardizing the evaluation of
application servers. In the field of Java 2 Enterprise Edition, ECPerf [4] and its
successor, SPECjAppServer [5] are the most popular benchmarks. TPC-W [6] is a
benchmark that is not tied to any particular implementation technology.

Performance measurements can serve as the basis for performance modeling and
prediction. In the past few years several techniques and methods have been
proposed to address this goal. A group of them are based on queueing networks
[7], or extended or layered versions of queueing networks. These methods
establish a queueing network model of the system. By solving this model with
analytical methods or simulation, the prediction of performance metrics is
possible. Some of the proposed methods generate a queueing network model of
the system based on its UML model [8][9]. In [10], a queueing model for multi-
tier internet applications is presented, where queues represent different tiers of the
application. The model faithfully captures several aspects of web applications, like
caching and concurrency limits at the tiers. The maximum size of the connection
queue, as presented earlier, can be considered as a concurrency limit of the web
tier in this model, but it cannot handle the maximum size of the thread pool.

Another group of performance modeling techniques uses Petri-nets or generalized
stochastic Petri nets, such as [11]. Petri nets can represent blocking and
synchronization aspects much more than queueing networks, which are more
suitable for modeling resource contention and scheduling strategies. A powerful
combination of the queueing network and the Petri net formalism is presented in
[12]. Using queueing Petri nets, the authors successfully model the performance of
a web application, considering the maximum size of thread pools. Their model,
however, does not take the maximum size of the connection queue into account.

This paper shows that the limits configured both for the connection queue and the
thread pool have a considerable effect on the performance.

3 Contributions

3.1 The Performance Measurement

The test web application is intentionally designed to be very simple, such that no
factors other than the settings of the application server can influence the
performance. It can serve one type of HTTP requests, and is implemented with a
Java servlet. On processing a request, it performs double precision computations,
and periodically inserts sleep() calls. This emulates typical web applications,
which use the processor of the machine that hosts the web container and calls
services on other machines (e.g. a database server) in a synchronous way, which
blocks the caller thread. The number of computations and the total sleep time can
be defined as parameters of the request. After processing a request, the web
application generates a small html file (of approximately 10 kilobytes) as a
response.

The application server (Sun Java System Application Server Enterprise Edition
8.1) runs on a PC with Windows XP, and a 3 GHz Pentium 4 HyperThreading
processor and 1 GB memory. The emulation of the browsing clients is performed
by an open source load tester, JMeter, which runs on another PC, with similar
hardware. The two machines are connected via a 100 Mbit/s LAN.

Each test takes 20 minutes, during which the virtual clients send their requests to
the server. Each virtual client inserts an exponentially distributed thinking time
between its requests with mean 4 seconds. The virtual clients are started gradually,
in a 40 seconds interval. The system reaches a steady state after 2 minutes in terms
of average response time and throughput. Between two test runs, the application
server is restarted because the new settings have to be reloaded. The values of the
two investigated tuning parameters, and the numbers of the emulated clients
during the individual measurements are summarized in Table 1. With these values,
we expect that both the saturation of the thread pool and of the connection queue
can be observed.

Maximum size of the
thread pool 30, 100

Maximum size of the
connection queue 50, 200

Number of emulated
clients

10, 20, 30, 40, 50, 60,
70, 80, 90, 100

Table 1
Number of clients and values of the tuning parameters during the measurements

3.2 The Results

During each measurement, the following metrics were registered:

• The average response time of the requests, measured at the clients. This
includes the network time of sending the request and receiving the response,
but this time it is negligible, since these files are small, moreover, the client
and the server are on the same local network. This is verified by comparing
the client side response time to the response time measured at the server side.
The two values differ less than 5 percent, thus, the time of the server side
processing dominates the client side response time in our experiments.

• The throughput of the system, which is the number of served requests in a
second.

• The rate of requests that are dropped by the server.

• The processor and memory usage of the server and the machine running the
clients. We found that the memory usage does not reach the 80% of the
available physical memory on either of the machines. The processor usage on
the client machine never reaches 60 percent, therefore, it cannot be a
bottleneck in our measurements.

Hereafter the measured response times are presented first. The JMeter tool can log
the average response time of all requests (Rall), and the average response of the
unsuccessful requests (Rerror). The average response time of the successful requests
(Rsucc) can be derived as follows. Let e denote the rate of unsuccessful requests, n
the total number of requests during a measurement. Then equation (1) holds.

succerrorall RenRenRn ∗−∗+∗∗=∗)1((1)

This suggests that

e
ReR

R errorall
succ −

∗−
=

1 (2)

The values computed with Equation (2) are depicted in Figure 2. As one can see
from the two overlapping lines, the maximum size of the thread pool does not
influence the response time when 200 connections are allowed. With maximum 50
connections, however, the maximum size of the thread pool has a significant effect
on the response time: the configuration with 100 threads performs better than the
one with 30 threads. Our other observation is that for more than 60 clients, if we
limit the connection queue to 50, it is possible to achieve better response time than
that with 200 connections allowed. The reason of this phenomenon can be
explained considering the rate of the unsuccessful requests in Figure 3.

Average response time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 20 40 60 80 100 120

Num ber of clients

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)
30 Threads, 50 ConnQ 100 Threads, 50 ConnQ

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ

Figure 2

The average response time in the various configurations

It can be seen that with maximum connection queue size of 200, all the requests
are successfully served. This is the expected behavior, since all the clients wait for
the response to their current request before sending a new one. In this way, it is
impossible not to serve a request due to a full connection queue, since the number
of clients never exceeds the maximum connection queue size of 200. With the
connection queue sized at 50, however, dropping requests is expected, when the
number of clients exceeds 50. Figure 3 confirms this expectation: the two
configurations with the maximum connection queue of 50 have a non-zero rate of
unserved requests. Because a considerable part of the requests does not consume
the resources of the server, a better performance can be guaranteed for the rest of
the requests. It is notable that the error rate is higher for 100 threads than for 30
threads, supposedly due to the increased contention between the threads.

Figure 4 illustrates the throughput measured during the experiments. The curves
are virtually identical in the different configurations and they saturate around 7
requests/sec. This means, that with 50 connections, although dropping a notable
part of the requests (see Figure 3), the improvement in the average response time
of the served requests reaches a degree that compensates the negative effect of the
increased error rate.

Error rate

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0 20 40 60 80 100

Num ber of clients

R
at

e
of

 d
ro

pp
ed

re

qu
es

ts
30 Threads, 50 ConnQ 100 Threads, 50 ConnQ

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ

Figure 3

The rate of unsuccessful requests in the various configurations

Throughput of successful requests

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

Num ber of clients

Th
ro

ug
hp

ut
 (1

/s
ec

)

30 Threads, 50 ConnQ 100 Threads, 50 ConnQ

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ

Figure 4
Throughput of successful requests in the various configurations

3.3 Performance Reasoning

To meet the performance requirements of Service Level Agreements, the
performance metrics of a system under given conditions can be obtained in two
ways. The first method is load testing which was presented in the previous

sections. The other method is to establish an analytical performance model of the
system which can provide an estimation of the relevant performance metrics.

In this section we apply a queueing model of the performance and validate it
against the results of the load testing. To specify a queueing system, it is necessary
to identify following parameters. The distribution of the interarrival time (the
think time introduced by the virtual clients) is exponential with mean 4 seconds
(Z). The exact distribution of the service time is unknown, but to keep our model
simple, we will assume an exponential distribution with mean 0.14 seconds (S)
based on measurements using one virtual client. The service rate µ is defined as
1/S. The number of servers is one, the popoulation size (K) is equal to the number
of virtual clients. The system capacity (B), i.e. the maximum number of requests in
the system is equal to the maximum size of the connection queue, because a
request in the connection queue remains there until the request is served.

Using these parameters, our queueing system can be described using Kendall
notation: M/M/1/B/K, where M stands for memoryless, a well-known property of
the exponential distribution. To solve this system, we should first calculate the
probability that there are k requests at the server (pk), using (3) and (4). A
derivation of these formulas can be found in [13].

Bk
ZkK

Kpp kk ,...,1
)()!(

!
0 =

−
=

μ
 (3)

1

0
0)()!(

!
−

=
⎥
⎦

⎤
⎢
⎣

⎡
−

= ∑
B

k
kZkK

Kp
μ

 (4)

Based on these results, all other performance metrics are easy to compute, using
some basic results of queueing theory. The requests are dropped, when the system
reached its capacity B, hence, the error rate e=pB. The throughput of the system
(X) can be calculated based on the Utilization Law which states X=U/S, where U
is the utilization of the server i.e. the probability that the server is busy, so U=1-
p0. And finally, we obtain the average response time from Little’s Law: R=N/X,
where N is the average number of request in the system, that is:

∑
=

=
B

k
kpkN

0
* (5)

The performance metrics obtained from this model are compared to the measured
values in the figures below. The throughput values obtained from the model are
virtually the same for 50 and 200 connection queue size, thus, they are presented
together in Figure 5. The model slightly overestimates the measured values, but
the fit is sufficiently accurate.

Throughput of successful requests

0
1
2
3
4
5
6
7
8

0 20 40 60 80 100 120

Num ber of clients

Th
ro

ug
hp

ut
 (1

/s
ec

)
30 Threads, 50 ConnQ 100 Threads, 50 ConnQ

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ

Model

Figure 5

Comparing the model with the measured data – throughput

Since with a maximum connection queue size of 200, the error rate is zero both for
the measured configurations and in the model, this case is not depicted. When the
connection queue is limited to 50, the model provides values that are between the
measured values for maximum 30 and 100 threads (Figure 6). This is due to the
fact that our model does not model the thread limits.

Error rate

-10,00%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0 20 40 60 80 100

Num ber of clients

R
at

e
of

 d
ro

pp
ed

re

qu
es

ts

30 Threads, 50 ConnQ 100 Threads, 50 ConnQ Model for 50 ConnQ

Figure 6
Comparing the model with the measured data – error rate

The curves for the average response times are quite different depending on the
connection queue size, and they are considered separately in Figure 7 and 8. In
both cases the model overestimates the response time, but the nature of the curve
is captured for both cases. With maximum 50 connections, the effect of the thread
pool which is not included in our model becomes considerable which explains the
larger deflection from the measured values.

Average response time

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120

Num ber of clients

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

30 Threads, 200 ConnQ 100 Threads, 200 ConnQ Model for 200 ConnQ

Figure 7
Comparing the model with the measured data – average response time with 200 ConnQ

Average response time

0

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80 100 120

Num ber of clients

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

30 Threads, 50 ConnQ 100 Threads, 50 ConnQ Model for 50 ConnQ

Figure 8
Comparing the model with the measured data – average response time with 50 ConnQ

Conclusions

This paper presented the results of a performance measurement that focused on
two settings of the application server. We state that by limiting the maximum size
of the connection queue, better response time can be achieved, but with higher
error rate, while maintaining the same throughput. We have also shown that
increasing the limit of the thread pool size results in an increased error rate and
decreased response time when the number of clients exceeds the maximum size of
the connection queue. The simple queueing model proposed in this paper is able to
quantitatively capture the effect of the maximum size of the connection pool.
Extending the model with the thread pool is subject of future work, similarly to
testing the relevance of the model with more complicated web applications.

References

[1] Sun Java™ System Application Server Enterprise Edition 8.1 Performance
Tuning Guide, Sun Microsystems, Inc., 2005

[2] M. Sopitkamol, D. A. Menascé: A Method for Evaluating the Impact of
Software Configuration Parameters on E-Commerce Sites, in Proceedings
of ACM 5th International Workshop on Software and Performance, Palma,
Illes Balears, Spain, 2005, pp. 53-64

[3] Á. Bogárdi-Mészöly, G. Imre and H. Charaf: Investigating Factors
Influencing the Response Time in J2EE Web Applications, WSEAS
Transactions on Computers, 4(2), 2005, pp. 179-183

[4] ECPerf project homepage can be found at -
http://ecperf.theserverside.com/ecperf/index.jsp

[5] Standard Performance Evaluation Corporation (SPEC), SPECjAppServer
website - http://www.spec.org/osg/jAppServer/

[6] Transaction Processing Performance Council, TPC-W -
http://www.tpc.org/tpcw/

[7] L. Kleinrock: Queueing systems, Volume 1: Theory (John Wiley and Sons,
Inc., 1975)

[8] V. Cortellessa, A. D’Ambrogio and G. Iazeolla: Automatic Derivation of
Software Performance Models from CASE Documents, Performance
Evaluation, 45(2), 2001, pp. 81-105

[9] V. Cortellessa and R. Mirandola: Deriving Queueing Network Based
Performance Model from UML Diagrams, in Proceedings of ACM 2nd
International Workshop on Software and Performance, Ottawa, Ontario,
Canada, 2000, pp. 58-70

[10] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer and A. Tantawi: An
Analytical Model for Multi-Tier Internet Services and Its Applications,

ACM SIGMETRICS Performance Evaluation Review, 33(1), 2005, pp.
291-302

[11] S. Bernardi, S. Donatelli and J. Merseguer: From UML Sequence Diagrams
and Statecharts to Analysable Petri Net Models, in Proceedings of ACM 3rd
International Workshop on Software and Performance, Rome, Italy, 2002,
pp. 35-45

[12] S. Kounev, A. Buchmann: Performance Modelling of Distributed E-
Business Applications Using Queueing Petri Nets, in Proceedings of IEEE
International Symposium on Performance Analysis of Systems and
Software, Austin, Texas, 2003, pp. 143-155.

[13] D. A. Menascé, V. A. F. Almeida: Capacity Planning for Web Services,
Prentice-Hall, Upper Saddle River, 2002, pp. 325-337

