
Towards Generic Implementation of Software
Architectures

Jana Bandáková, Ján Kollár
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Kosice
Letna 9, 041 20 Kosice, Slovakia
Jana.Bandakova@tuke.sk, Jan.Kollar@tuke.sk

Abstract: The software architecture is the structure or the set of structures of the system,
which comprise software elements, externally visible properties of those elements and the
relationship amongst them. Very important role in developing of software architecture has
its modeling. Based on the model, the properties of modeled system can be analyzed, to
obtain required behavior. The essence of our idea presented in this paper is integrating
modeling and implementation stages using process functional paradigm, and select the
propositions for developing a method for automatic software architecture generation based
on aspect paradigm. In this paper we present the principles of generic modeling
environments, and the mechanisms for weaving process functional programs.

Keywords: Generic modeling, meta-models, process functional paradigm, program
transformation, software generation, aspect-oriented programming

1 Introduction

The software architecture of a computing system is the set of structures of the
system, which comprise software elements, the externally visible properties of
those elements and the relationship amongst them. The architecture defines how
elements and components relate to each other and describes the parts that the
system consists of and the relation between them. The architecture represents an
abstraction of a software system what means that the architecture component can
represent anything from small components to large subsystems. Mutual
interconnection of the components is also specified at the high level of abstraction.
Specifying the software architecture in developing of a system is very important
because it represents a high level description of the system being developed
[13,16]. Very important role in developing of software architecture has its
modeling [5]. In software engineering, models are used for various purposes and
helps us to ensure that the functionality is complete and correct, end-user needs

are met and program design supports scalability, security and other characteristics
[1,6,8]. Modeling is mostly based on the graphical techniques, but for our
purposes it is more substantial that it is not just about description and illustration,
but it also adheres to rules and patterns. Domain specific design environments
specify and configure, or generate the target application in a particular domain
specific field. On the other hand, generic environments are configurable for a wide
range of domains. Such environment contains a set of generic concepts.

Our goal is to integrate the generic modeling approaches with automatic software
architectures generation with respect of current and future requirements. This
paper is focused on mechanisms. We introduce the principles of generic modeling,
concentrating on the meta-modeling property as well as the characteristics and
ability of process functional paradigm [7,13,15] for the development of systems in
aspect-oriented manner.

2 Principles of Generic Modeling

A generic modeling environment (GME) is a programmable and configurable
toolkit for domain specific modeling. It means that it can by configured and
adapted from meta-level specification (which is called a meta-model or modeling
paradigm) that describes the domain. Before any system is built-up, it is necessary
to specify what is to be modeled, how the modeling is to be done and what type of
analyses must be formalized. Modeling paradigm represents a design choice, i.e.
syntactic, semantic and presentation information, which are necessary to create the
model of a system. The paradigm may differ based on the application area. Known
paradigms are for example UML, SF (finite state machine paradigm), and HFSM
(hierarchical finite state machine paradigm). After the paradigm is selected, the
meta-model is constructed. Meta-model contains the specification of domain
specific environment and represents a formal description of the model
construction semantics of the modeling environment. Meta-model contains
description of the entities, attributes and relationships that are available in target
modeling environment. This meta-model is then used to configure the generic
modeling environment and is used to automatically generate the target domain
specific environment containing the modeling elements and valid relationships
that can be constructed in domain specific. The domain specific environment is
used to build domain models, which are usually stored in database.

As mentioned above, generic modeling environment is based on meta-modeling
what means that the first step, before we begin work with an environment, is its
configuration - modeling of a modeling process. The output of the meta-modeling
process is a set of rules. This set of rules represents a paradigm, which configure
the environment for a specific application domain. The paradigm contains all

syntactic, semantic and presentation information with respect of the application
domain and is represented for example by UML class diagram.

First thing the modeler needs is the specification of the modeling application that
is to be implemented. This specification comes in natural language. When we have
a specification, we can begin with modeling. In meta-modeling, two basic things
are the most important to identify – entities used by the model and relations
between entities. Entities and relations have their attributes, which are used to
identify and qualify them. In meta-model we specify that this entity or this relation
has such attributes but the attributes are not further specified (attributes have no
values). As mentioned above, the GME support a set of generic concepts, which is
built into GME. The vocabulary of the domain specific languages is based on that
set. GME support various concepts for building complex models. GME uses the
following basic elements:

Atom

Atom is a basic entity that has no inner structure and cannot contain parts. It has
only attributes.

Model

Model is an abstract object that represents something in the real world and which
has its own state, identity and behavior. The main purpose of GME is to create and
manipulate models. Model has inner structure and it can contain a parts. It
contains atoms, other models (hierarchy) or other types of the objects. Model can
be opened to show its internal structure.

Connection

Connection represents the relation between two objects and has its attributes. It is
represented as a line between these objects. Connection can connect only objects
which are in the same diagram or when one diagram is the child of the other.
When we have a hierarchical model this can be a problem. To overcome this
problem, there are two important concepts in GME available – the references and
the sets. There are three different types of connections used in modeling –
generalization, containment and association. Generalization is associated with the
inheritance of entities.

Containment is a line that connects an object to its container. For example a router
contains ports, so the router represents a container and ports represent contained
objects. The last type of the connection is an association. This type of connection
is used mostly and it expresses an association of the object to another object. It is a
ternary relation between the association class and two endpoints.

References and Sets

References and sets are another important concepts in GME, which are used
mostly in hierarchical models to connect the objects at a different level of

hierarchy. Reference is an object (not real object, just reference) that represents
another object somewhere in the hierarchy and is associated with referred object.
It can behave like a pointer or alias. The main difference between pointer and alias
is that a pointer is separated from referred object and can by reset to another object
during the lifetime, while alias represents an object indistinguishable from a
referred object and cannot exist without them.

Sets are used when we need to associate an object with a large number of
neighboring objects in the diagram. It can be said that a particular object is a
member of the set. Sets can be seen as meta-aspects and they can be replaced by
the connection.

While creating a meta-model aspects and constraints can be defined. Aspect
specifies the set of objects that can be visible if that aspect is active. By other
words, aspects represent different points of view. Each model can have more than
one aspect. Each aspect shows related information about the meta-model. On the
other hand, constraints are used to express the general validity rules. Object
constraints language (OCL) is used to express constraints. This language is based
on predicates. The predicate can by true or false and in order to satisfy the
constraints it has to be true. To make a control of some objects and their
relationships, multiplicities can be used. For example, a container entity can
contain optional contained entities (e.g. router contains ports).

After the meta-model is created, it should be interpreted and registered. The output
of this process is a set of rules, which represents a paradigm. The paradigm can be
used to configure the environment for a specific application domain. Now the
specific application model based on this new paradigm can be created. The
environment for the specific domain contains components with relevant attributes
that were determined in meta-model. If any change occurs in meta-model, it must
be reinterpreted and registered again. The existing model is then updated
according to a new paradigm.

As shown above, the strength of generic modeling is the ability for exploiting
different paradigms, coming out from meta-modeling approach.

The weakness of meta-modeling concept is still in that it comprises in fact just
two-stage process of defining paradigm and then (based on this paradigm) a
model, without direct binding to the implementation. Then, the implementation of
software architecture is the separated process.

3 Process Functional Paradigm

To be able to transform the software architecture model to software architecture
implementation, we need the language support for performing the required
transformations and the mechanisms for these transformations.

In the past, coming out from functional programming languages [11], process
functional language (PFL) has been developed, which allows to express the
computation by expression evaluation without assignments, as it is in purely
functional languages, but with side effects, as in imperative languages.

The advantage of expression form is clear, when program transformations are
required.

The side effects without assignments are achieved by the new concept of
environment variable in PFL, which is the essence of process functional paradigm.
An environment variable is hidden, from the viewpoint that it is never used in
expressions. But it is visible in type definitions of a process. It means that omitting
type definition of a process, its definition is purely functional. This, at the first
sight perhaps confusing concept is achieved by two-fold meaning of environment
variable. First, it is a memory cell. Second, it is mutable abstract type defined by
two overloaded operations, as follows. Let env represents the environment in
which the variable is mapped to a value:

env = variable → value

Then

v :: T → T (1)
v x = x

v :: () → T (2)
v () = env v

According to (1), if an environment variable is applied to a value of data type T, it
updates the cell v by the identity application. According to (2), if an environment
variable is applied to the unit value () of unit type (), the value this application is
the value of environment variable env v.

The access and update of an environment variable are illustrated in Fig. 1.

Let us introduce now an example of how the side effect is achieved when process
add defined (with environment variables u,v in its type definition) as follows

add :: u Int → v Int → Int
add x y = x+y

is applied to data values 1 and 2 by the application (add 1 2).

Figure 1
The access and update of an environment variable

The environment variable u is updated to value 1 and variable v to value 2 by the
side effects. The new environment is as follows:

env = oenv [u |→ 1] [v |→ 2] (3)

The value of the application will be 3.

Provided that the environment is defined by (3), the application (add () ()) does
not affect it at all and the value is again 3, since arguments 1 and 2 are accessed
from u and v, respectively.

It may be noticed that the same effect we will obtained by pure function add
(omitting u and v in type definition) and using the application in the form

(add (u 1) (v 2))

In fact, this is an intermediate form for PFL program, since, as mentioned above,
we never use environment variables in the source program expressions. On the
other hand, we are still able to proceed in backward direction, because we may left
function add purely functional, we may generate new processes p and q

p :: u Int → Int
p x = x

q :: v Int → Int
q x = x

and reflect the values of arguments 1 and 2 to environment variables u and v
respectively, by the transformation of application (add 1 2) to the form

(add (p 1) (q 2))

But notice that then it is just simple stage to the change of the semantics. For
example, substituting q x = x by q x = x+3 above, the value of (add (p 1) (q 2))
will be 6, not 3. Hence, it is possible to add a new aspect of the system preserving
the purely functional form of expressions, from the viewpoint that all environment
variables occur in types. In this way, memory cells in which values are either
reflected or accessed, are systematically separated from code, they are visible,
they may be shared or non-shared, they may be the subjects of monitoring, mutual
binding by processes, etc. In the next section, we will show, how environment
variables of local processes that are aligned to formal parameters of a function,
allows implementing aspect paradigm in PFL.

4 Aspect Paradigm in PFL

Aspect paradigm [6,9] has evolved from object paradigm, as a result of
consideration that there are programming problems that are insufficiently captured
by object paradigm. For example, some parts of the source code are repeated (e.g.
logging to a database) what can lead to a tangled code. Aspect-oriented paradigm
allows programmers to modularize crosscutting concerns and to weave them in
join points, selected by pointcut designators, by weaving. The goal of weaving is
to add new advices (parts of code) to many join points, being possibly located in
different modules. In AspectJ, there may be three types of advices – after advise,
before advice and instead advice.
In this section we adopt the mechanism for the changing the semantics in PFL,
introduced above, to the more complex task, how to use it for expressing before
advice. Instead of formal description we will introduce the example, which
illustrates the ability of PFL for weaving.
Suppose we define advice in the form

elsewhere
 (f {*})

advise (ad {()}) where
 ad :: x* Int→ x* Int → Int
 ad u v = adf (print u) (print v)
 adf _ _= f {*}

where x* is used for arguments of picked – out functions that match formal
parameter names starting with x. The aim of pointcut designator elsewhere (f {*})
is to select all applications of the function f, regardless of their locations in the
program.
Let the function f is defined as follows:

f :: Int → Int → Int
f x y = x + y

and there are just two its applications (f (xa + xb) xc) and (f (xa* y) xb) that occur
in the definitions of functions g and h that let be defined as follows:

g :: Int → Int → Int → Int
g xa xb xc = f (xa + xb) xc

h :: Int → Int → Int → Int
h xa y xb = f (xa* y) xb

Based on poincut designator in the advice above, functions g and h are picked out,
and for advising there are selected xc and xb formal parameters in g, and xa and xb
formal parameters in h.

Based on the advice, the woven form of functions g and h is as follows:

g :: Int → Int → Int → Int
g xc xb xa = ad () ()
 where
 ad :: xc Int → xb Int → Int
 ad x y = adf (print x) (print y)

 adf _ _= f (xa + xb) xc

h :: Int → Int → Int → Int
h xa y xb = ad () ()
 where
 ad :: xa Int → xb Int → Int
 ad x y = adf (print x) (print y)
 adf _ _ = f (xa* y) xb

which means that before applications of f are performed in picked-out functions g
and h, the its arguments (xa + xb) and xc (in g), and (xa * y) and xb (in h) are
printed. We underline the environment variables of process ad just for explanation
purposes. Let us consider the woven form of g above. First, formal parameter xc
and environment variable xc, reside at the same memory location (on the stack).
(The same holds for xb and xb). Second, the function adf is defined by the
application(f (xa + xb)) xc, i.e. in terms of formal parameters xc, xb (and also xa)
of g, not in terms of environment variables xc and xb, because environment
variables are never used in expressions, as an essential principle of process
functional paradigm.

Conclusion

In this paper, we have present the present state of generic modeling, as a software
engineering approach, concluding with its main positive property – the ability of
forming meta-models for different paradigms. We identify a gap between
modeling and implementation approved from the viewpoint of both functional and
behavioral aspects of systems using mathematical methods. We have introduced
the essence of process functional paradigm, illustrating how it can be exploited in

backward manner to add side effect into side effect–free program, using
mathematical transformation into a software system. More complex example in
Section 4 illustrates the ability of process functional paradigm (namely its inner
reflection property) for the development of a system with aspect paradigm.

Since our grains of computation that are the subject of aspect development may
very fine the application areas may affect not just software architectures but the
results may be applied in a very specific areas, such grid architectures [2],
information environments [3], neural systems [14], communication protocols [12],
real-time systems [17].

At the present time, it is well known to us the mechanism for providing source-to-
source transformations with or without semantics change as well as the singleton
execution mechanism for systems – the application of processes. Our next step
will be the detailed analysis of automatic generation principles not just from
structure viewpoint [4], but considering the semantics [10].

References
[1] Jimmy Borowski: Software Architecture Simulation - Performance

evaluation during the design phase, thesis 2004, Inst. för
Programvaruteknik och datavetenskap Dept. of Software Engineering and
Computer Science, 28 pp.

[2] Marián Babík and Ladislav Hluchý: Towards a Scalable Grid Ontology,
Proc. of Informatics 2005, 20-21.6, 2005, Bratislava, pp. 159-164, ISBN
80-869243-3-8

[3] Július Baráth, Marcel Harakaľ: Consolidation and modernization of
information environment in praxis, Proc. of Informatics 2005, 20-21.6,
2005, Bratislava, pp. 355-357, ISBN 80-869243-3-8 (in Slovak)

[4] Matej Črepinšek, Marjan Mernik: Inferring Context-Free Grammars for
Domain–Specific Languages, Conf. on Language Descriptions, Tools and
Applications, LDTA 2005, April 3, 2005, Edinburgh, Scotland, UK, pp.

[5] Marc L. McKelvin, Jonathan Sprinkle, Claudio Pinello, Alberto
Sangiovanni Vincentelli: Fault Tolerant Data Flow Modeling Using the
Generic Modeling Environment: Proc. of 12th IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems, pp. 229-235, April, 2005

[6] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, John Irwin: Aspect - Oriented
Programming: Proc. of European Conference on Object-Oriented
Programming, 1997, pp. 220-226

[7] Ján Kollár: Unified Approach to Environments in a Process Functional
Language, Computing and Informatics, Vol. 22, 2003, pp. 439-456, ISSN
1335-91

[8] Ákos Ledeczi, Miklós Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett,
Charles Thomason, Greg Nordstrom, Jonathan Sprinkle, Peter Volgyesi:
The Generic Modeling Environment, Proc. of WISP'2001, May 2001,
Budapest

[9] Marjan Mernik, Tomaž Kosar, Viljem Žumer: A Note on Aspect, Aspect-
Oriented and Domain-Specific Languages, Acta Electrotechnica et
Informatica, Vol. 5, No. 1, 2005, pp. 5-12, ISSN 1335-8243

[10] Marjan Mernik, Matej Črepinšek: Prolog and Automatic Language
Implementation Systems, Acta Electrotechnica et Informatica, Vol. 5, No.
3, 2005, pp. 42-49, ISSN 1335-8243

[11] S. L. Peyton Jones: The implementation of functional programming
languages, University College London, 1987, pp. 439, ISBN 0-13-453333-
X

[12] Daniela E. Popescu, Daniel Filipas, Cristian Tiurbe: Comparative analyses
for a hardware and software implementation of the TCP protocol, Analele
Universitatii din Oradea, Proc. 8th International Conference on Engineering
of Modern Electric Systems, Felix Spa-Oradea, May 26-28, University of
Oradea, Romania, 2005, pp. 104-112, ISSN 1223-21

[13] Jaroslav Porubän: Time and space profiling for process functional
language, Proceeding of the 7th Scientific Conference with International
Participation Engineering of Modern Electric Systems '03, Felix Spa,
Oradea, May 29-31, 2003, Felix Spa - Oradea, University of Oradea, 2003,
pp. 167-172, ISSN 1223-2106 Functional Programs Profilation, Phd.
Thesis, 2004

[14] B. Sivák, J. Škrinárová: The role of border conditions in optimal
approximation real functions with neural nets, Proc. of Informatics 2005,
20-21.6, 2005, Bratislava, pp. 97-101, ISBN 80-869243-3-8 (in Slovak)

[15] Václavík Peter, Kollár Ján, Porubän Jaroslav: Object-oriented
Programming with Functional Language, 8th International Conference
ISIM'05, Hradec nad Moravicí, Czech Republic, April 19-20, 2005, pp.
167-174, ISBN 80-86840-09-3

[16] W. Zhao, J. G. Gray, B. R. Bryant, C. C. Burt, R. R. Raje, A. M Olson, M.
Auguston: A Generative and Model Driven Framework for Automated
Software Product Generation: Proc. of the 6th ICSE Workshop on
Component-Based Software Engineering: Automated Reasoning and
Prediction, pp. 103-108. Portland, Oregon, May 2003

[17] Doina Zmaranda, Gianina Gabor, Claudia Rusu: Evaluation method
algorithm used to improve real-time control systems stability, Analele
Universitatii din Oradea, Proc. 8th International Conference on Engineering
of Modern Electric Systems, Felix Spa-Oradea, May 26-28, University of
Oradea, Romania, 2005, pp. 170-175, ISSN 1223-2106

