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Abstract: The software architecture is the structure or the set of structures of the system, 
which comprise software elements, externally visible properties of those elements and the 
relationship amongst them. Very important role in developing of software architecture has 
its modeling. Based on the model, the properties of modeled system can be analyzed, to 
obtain required behavior. The essence of our idea presented in this paper is integrating 
modeling and implementation stages using process functional paradigm, and select the 
propositions for developing a method for automatic software architecture generation based 
on aspect paradigm. In this paper we present the principles of generic modeling 
environments, and the mechanisms for weaving process functional programs. 
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1 Introduction 

The software architecture of a computing system is the set of structures of the 
system, which comprise software elements, the externally visible properties of 
those elements and the relationship amongst them. The architecture defines how 
elements and components relate to each other and describes the parts that the 
system consists of and the relation between them. The architecture represents an 
abstraction of a software system what means that the architecture component can 
represent anything from small components to large subsystems. Mutual 
interconnection of the components is also specified at the high level of abstraction. 
Specifying the software architecture in developing of a system is very important 
because it represents a high level description of the system being developed 
[13,16]. Very important role in developing of software architecture has its 
modeling [5]. In software engineering, models are used for various purposes and 
helps us to ensure that the functionality is complete and correct, end-user needs 



are met and program design supports scalability, security and other characteristics 
[1,6,8]. Modeling is mostly based on the graphical techniques, but for our 
purposes it is more substantial that it is not just about description and illustration, 
but it also adheres to rules and patterns. Domain specific design environments 
specify and configure, or generate the target application in a particular domain 
specific field. On the other hand, generic environments are configurable for a wide 
range of domains. Such environment contains a set of generic concepts. 

Our goal is to integrate the generic modeling approaches with automatic software 
architectures generation with respect of current and future requirements. This 
paper is focused on mechanisms. We introduce the principles of generic modeling, 
concentrating on the meta-modeling property as well as the characteristics and 
ability of process functional paradigm [7,13,15] for the development of systems in 
aspect-oriented manner. 

2 Principles of Generic Modeling 

A generic modeling environment (GME) is a programmable and configurable 
toolkit for domain specific modeling. It means that it can by configured and 
adapted from meta-level specification (which is called a meta-model or modeling 
paradigm) that describes the domain. Before any system is built-up, it is necessary 
to specify what is to be modeled, how the modeling is to be done and what type of 
analyses must be formalized. Modeling paradigm represents a design choice, i.e. 
syntactic, semantic and presentation information, which are necessary to create the 
model of a system. The paradigm may differ based on the application area. Known 
paradigms are for example UML, SF (finite state machine paradigm), and HFSM 
(hierarchical finite state machine paradigm). After the paradigm is selected, the 
meta-model is constructed. Meta-model contains the specification of domain 
specific environment and represents a formal description of the model 
construction semantics of the modeling environment. Meta-model contains 
description of the entities, attributes and relationships that are available in target 
modeling environment. This meta-model is then used to configure the generic 
modeling environment and is used to automatically generate the target domain 
specific environment containing the modeling elements and valid relationships 
that can be constructed in domain specific. The domain specific environment is 
used to build domain models, which are usually stored in database. 

As mentioned above, generic modeling environment is based on meta-modeling 
what means that the first step, before we begin work with an environment, is its 
configuration - modeling of a modeling process. The output of the meta-modeling 
process is a set of rules. This set of rules represents a paradigm, which configure 
the environment for a specific application domain. The paradigm contains all 



syntactic, semantic and presentation information with respect of the application 
domain and is represented for example by UML class diagram. 

First thing the modeler needs is the specification of the modeling application that 
is to be implemented. This specification comes in natural language. When we have 
a specification, we can begin with modeling. In meta-modeling, two basic things 
are the most important to identify – entities used by the model and relations 
between entities. Entities and relations have their attributes, which are used to 
identify and qualify them. In meta-model we specify that this entity or this relation 
has such attributes but the attributes are not further specified (attributes have no 
values). As mentioned above, the GME support a set of generic concepts, which is 
built into GME. The vocabulary of the domain specific languages is based on that 
set. GME support various concepts for building complex models. GME uses the 
following basic elements: 

Atom 

Atom is a basic entity that has no inner structure and cannot contain parts. It has 
only attributes. 

Model 

Model is an abstract object that represents something in the real world and which 
has its own state, identity and behavior. The main purpose of GME is to create and 
manipulate models. Model has inner structure and it can contain a parts. It 
contains atoms, other models (hierarchy) or other types of the objects. Model can 
be opened to show its internal structure. 

Connection 

Connection represents the relation between two objects and has its attributes. It is 
represented as a line between these objects. Connection can connect only objects 
which are in the same diagram or when one diagram is the child of the other. 
When we have a hierarchical model this can be a problem. To overcome this 
problem, there are two important concepts in GME available – the references and 
the sets. There are three different types of connections used in modeling – 
generalization, containment and association. Generalization is associated with the 
inheritance of entities. 

Containment is a line that connects an object to its container. For example a router 
contains ports, so the router represents a container and ports represent contained 
objects. The last type of the connection is an association. This type of connection 
is used mostly and it expresses an association of the object to another object. It is a 
ternary relation between the association class and two endpoints. 

References and Sets 

References and sets are another important concepts in GME, which are used 
mostly in hierarchical models to connect the objects at a different level of 



hierarchy. Reference is an object (not real object, just reference) that represents 
another object somewhere in the hierarchy and is associated with referred object. 
It can behave like a pointer or alias. The main difference between pointer and alias 
is that a pointer is separated from referred object and can by reset to another object 
during the lifetime, while alias represents an object indistinguishable from a 
referred object and cannot exist without them. 

Sets are used when we need to associate an object with a large number of 
neighboring objects in the diagram. It can be said that a particular object is a 
member of the set. Sets can be seen as meta-aspects and they can be replaced by 
the connection. 

While creating a meta-model aspects and constraints can be defined. Aspect 
specifies the set of objects that can be visible if that aspect is active. By other 
words, aspects represent different points of view. Each model can have more than 
one aspect. Each aspect shows related information about the meta-model. On the 
other hand, constraints are used to express the general validity rules. Object 
constraints language (OCL) is used to express constraints. This language is based 
on predicates. The predicate can by true or false and in order to satisfy the 
constraints it has to be true. To make a control of some objects and their 
relationships, multiplicities can be used. For example, a container entity can 
contain optional contained entities (e.g. router contains ports). 

After the meta-model is created, it should be interpreted and registered. The output 
of this process is a set of rules, which represents a paradigm. The paradigm can be 
used to configure the environment for a specific application domain. Now the 
specific application model based on this new paradigm can be created. The 
environment for the specific domain contains components with relevant attributes 
that were determined in meta-model. If any change occurs in meta-model, it must 
be reinterpreted and registered again. The existing model is then updated 
according to a new paradigm. 

As shown above, the strength of generic modeling is the ability for exploiting 
different paradigms, coming out from meta-modeling approach. 

The weakness of meta-modeling concept is still in that it comprises in fact just 
two-stage process of defining paradigm and then (based on this paradigm) a 
model, without direct binding to the implementation. Then, the implementation of 
software architecture is the separated process. 



3 Process Functional Paradigm 

To be able to transform the software architecture model to software architecture 
implementation, we need the language support for performing the required 
transformations and the mechanisms for these transformations. 

In the past, coming out from functional programming languages [11], process 
functional language (PFL) has been developed, which allows to express the 
computation by expression evaluation without assignments, as it is in purely 
functional languages, but with side effects, as in imperative languages. 

The advantage of expression form is clear, when program transformations are 
required. 

The side effects without assignments are achieved by the new concept of 
environment variable in PFL, which is the essence of process functional paradigm. 
An environment variable is hidden, from the viewpoint that it is never used in 
expressions. But it is visible in type definitions of a process. It means that omitting 
type definition of a process, its definition is purely functional. This, at the first 
sight perhaps confusing concept is achieved by two-fold meaning of environment 
variable. First, it is a memory cell. Second, it is mutable abstract type defined by 
two overloaded operations, as follows. Let env represents the environment in 
which the variable is mapped to a value: 

env = variable → value 

Then 

v :: T → T (1) 
v x = x 

v :: () → T (2) 
v () = env v 

According to (1), if an environment variable is applied to a value of data type T, it 
updates the cell v by the identity application. According to (2), if an environment 
variable is applied to the unit value () of unit type (), the value this application is 
the value of environment variable env v. 

The access and update of an environment variable are illustrated in Fig. 1. 

Let us introduce now an example of how the side effect is achieved when process 
add defined (with environment variables u,v in its type definition) as follows 

add :: u Int → v Int → Int  
add x y = x+y 

is applied to data values 1 and 2 by the application (add 1 2). 



Figure 1 
The access and update of an environment variable 

The environment variable u is updated to value 1 and variable v to value 2 by the 
side effects. The new environment is as follows: 

env = oenv [u |→ 1] [v |→  2] (3) 

The value of the application will be 3. 

Provided that the environment is defined by (3), the application (add () ()) does 
not affect it at all and the value is again 3, since arguments 1 and 2 are accessed 
from u and v, respectively. 

It may be noticed that the same effect we will obtained by pure function add 
(omitting u and v in type definition) and using the application in the form 

(add (u 1) (v 2)) 

In fact, this is an intermediate form for PFL program, since, as mentioned above, 
we never use environment variables in the source program expressions. On the 
other hand, we are still able to proceed in backward direction, because we may left 
function add purely functional, we may generate new processes p and q 

p :: u Int → Int 
p x = x 

q :: v Int → Int 
q x = x 

and reflect the values of arguments 1 and 2 to environment variables u and v 
respectively, by the transformation of application (add 1 2) to the form 

(add (p 1) (q 2)) 



But notice that then it is just simple stage to the change of the semantics. For 
example, substituting q x = x by q x = x+3 above, the value of (add (p 1) (q 2)) 
will be 6, not 3. Hence, it is possible to add a new aspect of the system preserving 
the purely functional form of expressions, from the viewpoint that all environment 
variables occur in types. In this way, memory cells in which values are either 
reflected or accessed, are systematically separated from code, they are visible, 
they may be shared or non-shared, they may be the subjects of monitoring, mutual 
binding by processes, etc. In the next section, we will show, how environment 
variables of local processes that are aligned to formal parameters of a function, 
allows implementing aspect paradigm in PFL. 

4 Aspect Paradigm in PFL 

Aspect paradigm [6,9] has evolved from object paradigm, as a result of 
consideration that there are programming problems that are insufficiently captured 
by object paradigm. For example, some parts of the source code are repeated (e.g. 
logging to a database) what can lead to a tangled code. Aspect-oriented paradigm 
allows programmers to modularize crosscutting concerns and to weave them in 
join points, selected by pointcut designators, by weaving. The goal of weaving is 
to add new advices (parts of code) to many join points, being possibly located in 
different modules. In AspectJ, there may be three types of advices – after advise, 
before advice and instead advice. 
In this section we adopt the mechanism for the changing the semantics in PFL, 
introduced above, to the more complex task, how to use it for expressing before 
advice. Instead of formal description we will introduce the example, which 
illustrates the ability of PFL for weaving. 
Suppose we define advice in the form 

elsewhere 
     (f {*}) 

advise (ad {()}) where 
     ad :: x*  Int→ x*  Int → Int 
     ad u v = adf (print u) (print v) 
     adf _ _= f {*} 

where x* is used for arguments of picked – out functions that match formal 
parameter names starting with x. The aim of pointcut designator elsewhere (f {*}) 
is to select all applications of the function f, regardless of their locations in the 
program. 
Let the function f is defined as follows: 

f :: Int → Int → Int 
f x y = x + y 



and there are just two its applications (f  (xa + xb) xc) and (f  (xa* y) xb) that occur 
in the definitions of functions g and h that let be defined as follows: 

g :: Int → Int → Int → Int 
g xa xb xc = f (xa + xb) xc 

h :: Int → Int → Int → Int 
h xa y xb = f (xa* y) xb 

Based on poincut designator in the advice above, functions g and h are picked out, 
and for advising there are selected xc and xb formal parameters in g, and xa and xb 
formal parameters in h. 

Based on the advice, the woven form of functions g and h is as follows: 

g :: Int → Int → Int → Int 
g xc xb xa = ad () () 
  where 
      ad :: xc Int → xb Int → Int 
      ad x y = adf (print x) (print y) 

      adf _ _= f (xa + xb) xc 

h :: Int → Int → Int → Int 
h xa y xb = ad () () 
  where 
      ad :: xa Int → xb Int → Int 
      ad x y = adf (print x) (print y) 
     adf _ _ = f  (xa* y)   xb 

which means that before applications of f are performed in picked-out functions g 
and h, the its arguments (xa + xb) and xc (in g), and (xa * y) and xb (in h) are 
printed. We underline the environment variables of process ad just for explanation 
purposes. Let us consider the woven form of g above. First, formal parameter xc 
and environment variable xc, reside at the same memory location (on the stack). 
(The same holds for xb and xb). Second, the function adf is defined by the 
application(f (xa + xb)) xc, i.e. in terms of formal parameters xc, xb (and also xa) 
of g, not in terms of environment variables xc and xb, because environment 
variables are never used in expressions, as an essential principle of process 
functional paradigm. 

Conclusion 

In this paper, we have present the present state of generic modeling, as a software 
engineering approach, concluding with its main positive property – the ability of 
forming meta-models for different paradigms. We identify a gap between 
modeling and implementation approved from the viewpoint of both functional and 
behavioral aspects of systems using mathematical methods. We have introduced 
the essence of process functional paradigm, illustrating how it can be exploited in 



backward manner to add side effect into side effect–free program, using 
mathematical transformation into a software system. More complex example in 
Section 4 illustrates the ability of process functional paradigm (namely its inner 
reflection property) for the development of a system with aspect paradigm. 

Since our grains of computation that are the subject of aspect development may 
very fine the application areas may affect not just software architectures but the 
results may be applied in a very specific areas, such grid architectures [2], 
information environments [3], neural systems [14], communication protocols [12], 
real-time systems [17]. 

At the present time, it is well known to us the mechanism for providing source-to-
source transformations with or without semantics change as well as the singleton 
execution mechanism for systems – the application of processes. Our next step 
will be the detailed analysis of automatic generation principles not just from 
structure viewpoint [4], but considering the semantics [10]. 
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