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Abstract: The questions addressed in this paper concern the applicability of the 
eigenstructure assignment to design reconfigurable control systems in structures unbiased 
on operating condition changes. An optimization approach to control reconfiguration for 
system with output state feedback and guaranteed system stability is presented to 
demonstrate the reconfiguration flexibility and some characteristics of the system modes in 
fault tollerant control. 
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1 Introduction 

Fault-tolerant control is concerned with the control of the faulty system. This can 
be done by changing the control law in the dependency on the structures of the 
plant which is operated. Presented approach to control reconfiguration is based on 
eigenstructure assignment for control systems with output state feedback. This 
technique is concerned with the placing of eigenvalues and their associated 
eigenvectors, via feedback control laws, to meet closed-loop specifications. Since 
the interest here is in control reconfiguration using a feedback law that preserves 
the eigenstructure characteristics describing the nominal closed-loop system, the 
design task was reformulated for the use of the singular value decomposition 
(SVD) principle. 

The SVD is a tool of great importance in numerical analysis. It provides a stable, 
reliable transformation to canonical form which yields information about matrix 
rank, null space and range space not given by other decomposition. The SVD-
based tasks can be then solved using a method which preserves of the left and 
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right singular vectors. Furthermore, SVD takes place via orthogonal factors and so 
the conditioning of a matrix is completely unaffected. 

The paper gives some background material on eigenvectors characterization where 
the idea behind defined system eigenstructure assignment is used, i.e. the output 
state feedback gain matrix are designed for prescribed nominal and impaired 
changed system closed-loop eigenvalues. The proposed scheme preserves the most 
dominant eigenvalues of the closed-loop system structure for nominal and faulty 
system. 

2 Problem Formulation 

Specifically, the linear continuous-time multiple input/multiple output (MIMO) 
system can be specified by the state-space description 

.
( ) ( ) ( )t t= +x Ax Bu t

t

t

t

t

 (1) 

( ) ( )t =y Cx  (2) 

where x(t) Є Rn, u(t) Є Rr, and y(t) Є Rm are the actual state variable, input and 
output vectors, respectively, A Є R nxn, B Є R nxr, and C Є R mxn are the system 
matrices of appropriate dimensions. The system is assumed to be both controllable 
and observable and it is also assumed, that the input and output matrices are of full 
rank, that is rank(B) = r, rank(C) = m, and r = m < n, , rank(A) = n. Then there 
exist the matrix K such that the static output feedback of the form 

( ) ( ) ( )t t= − = −u Ky KCx  (3) 

can be designed. 

The freedom that characterizes the placing of the closed-loop system matrix 
eigenvalues and associated closed-loop eigenvectors, by eigenstructure assignment 
using output feedback, means that lease 

(i)  max(r,m) closed-loop eigenvalues can be assigned, 

(ii) max(r,m) eigenvectors can be assigned with assigned closed-loop eigenvalues. 

In view of (1), (2), (3), the closed-loop system is given by 

.
( ) ( ) ( )t = −x A BKC x  (4) 

( ) ( )t =y Cx  (5) 



The solution of the aforementioned problem is a real K Є Rrxm matrix which can 
be designed using singular value decomposition (SVD) method for prescribed set 
of eigenvalues {rj; j = 1,2,...,m}. 

3 State Transformation 

Given state model of the system (1), (2), it is possible to transform the state vector 
x(t) to the input-closed state space by a matrix T Є R nxn to yield the realization 

( ) ( )ct =x Tx t

t

t

t

 (6) 

Since (6) implies 

.
( ) ( ) ( )c ct t= +T x ATx Bu  (7) 

this follows as a consequence 

.
( ) ( ) ( )c c c ct t= +x A x B u  (8) 

( ) ( )c ct =y C x  (9) 

where 
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where Ir Є R rxr is the identity matrix. With this transform of state variables the 
gain matrix K in control law (3) is not changed, i.e. 

1( ) ( ) ( )c ct t−= − = −u KCTT x KC x t

t

 (11) 

and the closed-loop system equation (4) is transformed to 

.
( ) ( ) ( )c c c c ct = −x A B KC x  (12) 

As one can see, the state-transformation does not affect the output feedback gain 
matrix and this is also true for the eigenvalues of the transformed system. 



4 Feedback Gain Matrix 

For any pair of closed-loop eigenvalues and their associated closed-loop 
eigenvectors {(rj, hj),  j = 1,2,...,m, m+1,...,n}, generally complex conjugate, holds 

( ) , 1,2,c c c j j jr j− = =A B KC h h K,m

1,2, ,m=

,

 (13) 

where hj is the j-th right eigenvector. This can be also written as 
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The SVD procedure applied to the matrix Lcj results 
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where {qT
jl Є C n, l = 1,2,...,n}, {pjl Є C n+r, l = 1,2,...,n+r}, are the sets of left and 

right singular vectors, respectively, {σjl Є Rn, l = 1,2,...,n} is the set of singular 
values of Lj matrix, and {0jl Є Rn, l = n+1, ...  n+r} is the set of zero-values 
column vectors. Using this, the number of input variables, r, (r = rank(B)) 
determines the dimension of the subspace in which achievable eigenvectors must 
reside and orientation of the subspace is determined by the matrices (A, B) and the 
desired eigenvalue rj. 

It is evident from (15), that all column vectors {pjk, k = r+1, ... , n+r}, obtained by 
SVD procedure, satisfy the condition Lcjpjk = 0 and can be partitioned as in (14). 
Then using the SVD-based solutions for all desired eigenvalues it is possible to 
compute matrix K. If only one vector pjk , k = n+1,…, n+r from the set associated 
with rj is selected for design (no multiple eigenvalue rj be chosen), this vector can 
be partitioned as 
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for real or for complex desired closed-loop eigenvalue rj , respectively. Then using 
the SVD-based solutions for all desired eigenvalues one can construct the matrix 
equation 

[ ] [ ]1 2 1 2m c m c= =W w w w KC v v v KC VL L =

t

t

 (18) 

Consequently, the feedback gain matrix K is given by 

1( )c
−=K W C V  (19) 

where W Є R rxm, V Є R nxm, respectively. 

5 Control Reconfiguration 

The system faults modify the system properties, which can be now described by 
state-space equations 

.
( ) ( ) ( )f ft t= +x A x B u  (20) 

( ) ( )ft =y C x  (21) 

where Af Є R nxn, BB

t

f Є R , and Cnxr
f Є R  are the system matrices of the same 

dimensions with the matrices of the nominal state-space model. 

mxn

The reconfiguration task is to include a new stabilizing feedback control law 

( ) ( ) ( )f f ft t= − = −u K y K C x  (22) 

such that the new closed-loop system matrix Af – BBfKfCf can capture as much of 
the eigenstructure of the nominal closed-loop system matrix as possible. 

Analogously to (10) another transform matrix Tf  can be defined e.g. as 
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In the new state-coordinates, the impaired system is described by 



1 1, ,fc f f f fc f f fc f f
− −= =A T A T B T B C C T=  (24) 

In order to maintain the performance of the nominal closed-loop system, the 
control law (22) must be determined in such a way that the set of the impaired 
system matrix eigenvalues eig(Afc – BB

2, ,m

1,2, ,m=

fcKfCfc) includes the m most dominant 
eigenvalues {rj, j = 1,2,...,m} of the nominal system and the corresponding 
eigenvectors of the impaired system have to be as closed as possible to the 
corresponding eigenvectors of nominal system. 

For desired eigenvalues rj, j = 1,2,...,m, now holds 

( ) , 1,fc fc f fc fj j fjr j− = =A B K C h h K  (25) 
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respectively. Using the same design step as (15) – (19) are, starting from (26) one 
can compute gain matrix Kf for control law (22). 

Designed eigenstructure characterizes the behavior of the closed-loop system, 
since the eigenvalues determine the stability and the eigenvectors the 
controlability and observability of each system mode. 

6 Optimization 

Transformation matrices T or Tf  are not unique and there exist other structures of 
this matrices given by permutations in rows and coloms of the basic structure, i.e. 
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The optimization criterion in the frame of the transformed impaired system is 
2

1 2 2min ([ ... ] [ ... ])m if f mf h Fh
J = −h h h h h h  (28) 

where hi, i = 1,2,…,m are the right eigenvectors associated with desired 
eigenvalues. 

The procedure outlined above easily is extended to the case of state-feedback, but 
its reconfiguration flexibility is limited, since all the eigenvalues of the nominal 
closed-loop system have to be preserved in both control structures. 



7 Illustrative Example 

The continuous time system models are given by (1), (2), and (20), (21), where 

-0.0582 0.0651 0.0000 -0.1710 0.0000 1
-0.3030 -0.6850 1.1090 0.0000 0.0541 0

,
-0.0715 -0.6580 -1.9470 0.0000 1.1100 0
0.0000 0.0000 1.0000 0.0000 0.0000 0
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-0.0582 0.1000 0.0000 -0.1710 0.00 0.9
-0.1030 -0.6850 1.1090 0.0000 0.09 0.0

,
-0.0715 -0.6580 -0.9800 0.0000 1.11 0.0
0.0000 0.0000 1.5000 0.0000 0.00 0.0

f f
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Solving for all matrices with possible permutation of matrix elements in (27) the 
next nonsingular transform matrices were obtained 

1 2 3

0.0000 1 0 0 0.0000 1 0 0 0.0000 1 0 0
-0.0541 0 0 0 -0.0541 0 0 0 -0.0541 0 1 0

, ,
-1.1100 0 1 0 -1.1100 0 0 1 -1.1100 0 0 0
0.0000 0 0 1 0.0000 0 1 0 0.0000 0 0 1

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
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T T T  

4 1 2

0.0000 1 0 0 0.00 0.9 0 0 0.00 0.9 0 0
-0.0541 0 0 1 -0.09 0.0 0 0 -0.09 0.0 0 0

, ,
-1.1100 0 0 0 -1.11 0.0 1 0 -1.11 0.0 0 1
0.0000 0 1 0 0.00 0.0 0 1 0.00 0.0 1 0

f f

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢= = =
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

T T T  

3 4

0.00 0.9 0 0 0.00 0.9 0 0
-0.09 0.0 1 0 -0.09 0.0 0 1

,
-1.11 0.0 0 0 -1.11 0.0 0 0
0.00 0.0 0 1 0.00 0.0 1 0

f f
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T T  

and used for given transformation of the input matrices. Performing the 
calculations wit the transform matrix T2 = T, to illustrate the design step 
procedure, the numerical values for the Ac, BBc, and Cc, from (10), are given by 



22.0690 5.6007 -20.4991 0.0000
-0.0035 -0.0582 0.0000 -0.1710
26.6948 6.1453 -24.7010 0.0000
-1.1100 0.0000 1.0000 0.0000

c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
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⎣ ⎦

A  

1 0
0.00 1 0 0

0 1
, 0.00 0 0 1

0 0
1.11 0 1 0

0 0

c c
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⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎣ ⎦

⎣ ⎦

B C  

This nominal controller is to be designed using the desired eigenvalues 

[ 0.5973, 1.5 2.0 , 1.5 2.0 ]i i= − − + − −r  

Having obtained numerical values for the Ac, BB

⎥
⎥

c, and Cc, the matrices Lc1, Lc2, be 
construct from (14) using eigenvalue r1 = - 0.5973, r2 = -1.5 + 2.0i, as 

1

22.6663 5.6007 20.4991 0.0000 1 0
0.0035 0.5391 0.0000 0.1710 0 1

26.6948 6.1453 24.1037 0.0000 0 0
1.11000 0.0000 1.0000 0.5973 0 0

c

− −⎡ ⎤
⎢ ⎥−⎢=
⎢− −
⎢ ⎥− −⎣ ⎦

L   

2

23.5690 2.0 5.6007 20.4991 0.0000 1 0
0.0035 1.4418 2.0 0.0000 0.1710 0 1

26.6948 6.1453 23.2010 2.0 0.0000 0 0
1.11000 0.0000 1.0000 1.5000 2.0 0 0

c

i
i

i
i

− + −⎡ ⎤
⎢ ⎥− +⎢ ⎥=
⎢ ⎥− − +
⎢ ⎥− − +⎣ ⎦

L   

Applying MATLAB file svd to the matrices Lc1, Lc2, yields (the last two right 
singular column vectors) 

[ ]15 16

0.59810 0.3153
0.2617 0.7137
0.7290 0.1673
0.1092 0.3059
0.0762 0.2787
0.1576 0.4382

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

p p  



[ ]25 26

0.6365 0.0732 0.0317 0.1377
0.0241 0.0541 0.2270 0.2848
0.7393 0.0062 0.0888 0.0907
0.0319 0.0075 0.0070 0.0321
0.1288 0.0228 0.0769 0.1446
0.0703 0.1278 0.8955 0.0374

i i
i i
i i
i i
i i
i i

+ −⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥+ −

= ⎢ ⎥− + −⎢ ⎥
⎢ ⎥+ − +
⎢ ⎥
− − −⎣ ⎦

p p  

and matrices V and W can be form using p15 and p26 to get 

0.5980 0.0317 0.1377
0.2617 0.2270 0.2848 0.0762 0.0769 0.1446

,
0.7290 0.0888 0.0907 0.1576 0.8955 0.0374
0.1092 0.0070 0.0321

−⎡ ⎤
⎢ ⎥ −⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− −⎣ ⎦
⎢ ⎥− −⎣ ⎦

V W  

Using (19) to compute the control gain matrix K gives result 

1 6.6606 2.2639 29.3457
( )

28.7214 11.4608 136.8414c
− − −⎡ ⎤

= = ⎢ ⎥−⎣ ⎦
K W C V  

The eigenvalues we are looking for are 

( ) [ 0.5973, 1.5 2.0 , 1.5 2.0 , 3.0853]eig i i= − = − − + − − −r A BKC  

i.e. the desired eigenvalues are dominant. 

Supposing that the impaired system was changed due the system fault and the 
state-space matrices of this model are Af , BBf ,and Cf , respectively, similarly can 
be used the transform matrix T3f  and the numerical values for the Acf, BcfB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, and Ccf, 
from (24) are 

-1.0334 0.0580 0.5928 0.0000 1 0
-0.0100 -0.0582 0.1111 -0.1900 0 1

,
-1.2623 0.0875 -0.6316 0.0000 0 0
-1.6650 0.0000 0.0000 0.0000 0 0

fc c

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

A B  

0.00 0.81 0 0.0
0.00 0.00 0 0.7
1.11 0.00 0 0.0

c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

C  

Using the same desired eigenvalues, resulting control gain matrix Kf, optimal to 
K in the sence of minimal performace index (28), is 

0.2464 16.1160 5.0640
3.2194 49.3948 78.0429f

− −⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  



and the eigenvalues we are looking for are 

( ) [ 0.5973, 1.5 2.0 , 1.5 2.0 , 6.3550]f f feig i i= − = − − + − − −r A B KC  

One can verify that some solutions for some nonsingular transform matrices are 
unstable. 

Conclusions 

The paper presents some properties of the singular value decomposition and its 
application in eigenstructure assignment for output state feedback controller 
design tasks. This approach was taken in designing the reconfigurable control 
system with output feedback, where some special considerations were given to 
eigenvector/eigenvalue optimization for a system structures unbiased on system 
faults. The presented method offer a powerful way to select robust reconfigurable 
control based on known state-space models of a dynamic system. 
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