
Execution Properties of a Visual Control Flow
Language

László Lengyel, Tihamér Levendovszky, Gergely Mezei, Hassan
Charaf
Budapest University of Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
lengyel@aut.bme.hu, tihamer@aut.bme.hu, hassan@aut.bme.hu

Abstract: Graph rewriting-based model processing is a widely used technique for model
transformation. Especially visual model transformations can be expressed by graph
transformations, since graphs are well-suited to describe the underlying structures of
graphical models. Model transformations often need to follow an algorithm that requires a
strict control over the execution sequence of the transformation steps. Therefore,
termination criteria for graph and model transformation systems have become a focused
area. This work introduces a metamodel-based visual control flow language and discusses
several consideration related to the termination properties of the presented language.
Furthermore, it provides algorithms to compose metamodel-based model transformation
steps in order to support the termination analysis of graph rewriting-based visual model
processing.

Keywords: Control Flow, Metamodel-Based Model Transformation, OCL, Termination
Properties, UML

1 Introduction

Visual Modeling and Transformation System (VMTS) [1] [2] is an n-layer
metamodeling environment which supports editing models according to their
metamodels, and allows specifying OCL constraints. Models are formalized as
directed, labeled graphs. VMTS uses a simplified class diagram for its root
metamodel (“visual vocabulary”).

Also, VMTS is an UML-based [3] model transformation system, which transforms
models using graph rewriting techniques. Moreover, the tool facilitates the
verification of the constraints specified in the transformation step during the
model transformation process.

Graph rewriting [4] is a powerful technique for graph transformation with a formal
background. The atoms of the graph transformation are rewriting rules, each

rewriting rule consists of a left-hand side graph (LHS) and a right-hand side graph
(RHS). Applying a graph rewriting rule means finding an isomorphic occurrence
(match) of LHS in the graph to which the rule is applied (host graph), and
replacing this subgraph with RHS.

Model transformation means converting an input model available at the beginning
of the transformation process to an output model. Several widely used approaches
to model transformation use graph rewriting as the underlying transformation
technique. Previous work [1] has introduced an approach – metamodel-based
rewriting rules –, where the LHS and RHS of the transformation steps are built
from metamodel elements. This means that an instantiation of LHS must be found
in the host graph instead of the subgraph isomorphic to LHS. This metamodel-
based approach facilitates to assign OCL constraints to pattern rule nodes (PRNs)
– nodes of the rules.

The Object Constraint Language (OCL) [5] is a formal language for the analysis
and design of software systems. It is a subset of the UML standard [3] that allows
software developers to write constraints and queries over object models.

A precondition assigned to a transformation step is a Boolean expression that must
hold at the moment when the step is fired, and a postcondition assigned to a step is
a Boolean expression that must hold after the completion of a transformation step.
If a precondition of a step is not true, then the step fails without being fired. If a
postcondition of a transformation step is not true after the execution of the step,
then the transformation step fails. A direct corollary of this is that an OCL
expression in LHS is a precondition to the transformation step, and an OCL
expression in RHS is a postcondition to the transformation step.

In general, the termination of graph rewriting is undecidable [6], but under certain
conditions it is possible to prove termination for numerous model transformations.
This paper gives results related to the examination of such conditions. Therefore,
the motivation of the work presented in the current paper is to support making the
decision related to termination of metamodel-based visual control flow languages.
Section 2 introduces the VMTS Visual Control Flow Language (VCFL), which
termination properties and transformation step composition possibilities are
discussed in Section 3.

2 VMTS Visual Control Flow Language

One of the most important capabilities of a control flow language is the possibility
to express a transformation as an ordered sequence of the transformation steps.
Classical graph grammars apply any production that is feasible. This technique is
appropriate for generating and matching languages but model-to-model
transformations often need to follow an algorithm that requires a more strict

control over the execution sequence of the steps, with the additional benefit of
making the implementation more efficient.

The VMTS approach is a visual approach, and it also uses graphical notation for
control flow: stereotyped UML activity diagrams, which is a technique to describe
procedural logic. UML activity diagrams are intended to describe business
processes, and workflows.

In VMTS transformation steps, the internal causality is a relation between LHS
and RHS elements, it makes possible to connect an LHS element to an RHS
element and to assign an operation to this connection. An internal causality
describes what we to do during applying a transformation step (element creation,
element deletion, attribute modification). The create and modify operations are
accomplished by XSL scripts. The XSL scripts can access the attributes of the
objects matched to LHS elements, and they produce a set of attributes for RHS
element to which the causality point.

As it is presented through examples in Section 3, the expressiveness of the
multiplicities in the metamodel-based model transformation steps is high. In
VMTS both sides of the transformation steps use formalism similar to that of the
UML class diagram. The same instantiation rules apply to the LHS as to the UML
class diagram, with two exceptions. (i) An association with the multiplicity *
matches all the edges of the appropriate type in a given position. (ii) A type can
appear more than once in the rules. These types are processed by the matching
algorithm as if they were of different types. However, care is taken that the same
model element cannot be matched to two different LHS objects.

The interpretation of the undefined * multiplicity is not evident on the right-hand
side. In VMTS, this value is determined by the result of the attribute
transformation. The advantage of this approach is the flexibility that an attribute
can influence the structure. Therefore, a simple transformation step can have an
effect on an arbitrary part of the input model.

Sequencing transformation steps results in a transformation which contains the
steps in an ordered sequence (S0, S1… Sn-1). Assume the case that the input model of
the step i (Si) is the model Mi and the result of the Si is the model Mi+1 (where 0 ≤ i
≤ n-1). In this case the input model of the step i+1 (Si+1) is the model Mi+1. This
means that during the execution of the step sequence, each step works on the
result of the previous step.

The interface of the transformation steps allows the output of one step to be the
input of another step, in a dataflow-like manner. This is used to sequence
expression execution. In VCFL, this construct is referred to as an external
causality. An external causality creates a linkage between a node contained by
RHS of the step i and a node contained by LHS of the step i+1. This feature
accelerates the matching and reduces the complexity, because the step i provides
partial match to the step i+1.

Branching with OCL Constraints. Often, the transformation that we would like
to apply depends on a condition. Therefore, a branching construct is required. In
VCFL, OCL constraints assigned to the decision elements can choose between the
paths of optional numbers, based on the properties of the actual input model and
the success of the last transformation step (SystemLastRuleSucceed).

Hierarchical Steps. The VCFL supports hierarchical specification of the
transformation steps. High-level steps can be created by composing a sequence of
primitive steps and can be viewed as separate transformation modules. A high-
level step can contain several simple steps, hiding the details which could be
unimportant on a specific abstraction level and represents the contained steps as
coherent units.

Iteration (Tail Recursion) and Parallel Executions of the Steps. The iteration is
achieved with the help of the decision objects and the OCL constraints contained
by them. A decision object evaluates the assigned constraints, and based on the
results selects a flow edge which could be a follow-up or a backward edge as well.
Recursion can be solved with the composition of the iteration and external
causalities. A high-level step can call itself, where external causalities represent
the actual parameters of the recursive call. The parallel execution of the
independent transformation steps is supported by the Fork and Join elements.

In the VCFL, a transformation step has two specific attributes: Exhaustive and
MultipleMatch [7]. Recall that applying a model transformation step means
finding a match of LHS in the input model and replacing this subgraph with RHS.
An exhaustive transformation step is executed continuously as long as LHS of the
step can be matched to the input model. The MultipleMatch attribute of a step
allows that the matching process finds not only one but all occurrence of LHS in
the input model, and replacing is executed on all the found places.

In VCFL, if a transformation step fails and the next element in the control flow is
a decision object, it provides the next branch based on the OCL statements and the
value of the SystemLastRuleSucceed variable. If no decisions can be found, the
control is transferred to the parent state, and if there is no parent state, the
transformation terminates with error [8].

3 Termination Aspects

The termination properties of a transformation are really important for model
transformation. We want to investigate that under which conditions an arbitrary
VCFL transformation can satisfy termination criteria.

Definition. A VCFL Transformation is a stereotyped UML activity diagram. A
VCFL Transformation T defines a strict order of the contained transformation

steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is the start step of T. Transformation T
contains OCL constraints assigned to decision objects to choose between different
control flow branches, and external causalities between transformation steps to
support parameter passing.

Definition. A VCFL transformation T for a finite input model G0 terminates, if
there is no infinite derivation sequence from G0 via transformation steps

TSTEPS ∈ , where starting from S0 (start step of the T) steps STEPS are
applied as it is defined by the transformation T.

Termination of transformations is not always guaranteed. If a control flow model
contains an exhaustive step that can be applied infinitely to the result models, such
that the transformation does not terminate.

All derivation sequences over transformation steps TSTEPS ∈ are terminating if
each transformation step STEPSS ∈ terminate. Since the non-exhaustive
termination steps terminate, we can state that a VCFL transformation T terminates
if all exhaustive transformation step STEPSSE ∈ and loop TL∈ terminate.

In order to examine the termination properties of VCFL exhaustive transformation
steps and VCFL loops, we need a mechanism to compose the transformation steps.
This is a way to examine all the possible transformation execution without the
actual input models. The composed step can equivalently replace the original
steps, because it produces the same result and imposes the same input conditions
as the sequence composed of individual rules [9]. Moreover, to examine the
termination properties of the exhaustive transformation steps we also use the
composition algorithm. Recursively composing an exhaustively applied
transformation step SE with itself n times results a transformation step SC we can
use once for an input model G0 instead of applying the original step SE n times.

3.1 Composing Metamodel-Based Model Transformation
Steps

The VMTS approach uses metamodel-based transformation steps. This means that
steps are built from metamodel elements, and the LHS and RHS of the steps are
the metamodels of the matched and produced model parts.

The composition algorithm takes not only the structure of the steps into
consideration but also the external- and internal causalities, the metatypes of the
PRNs and edges and the constraints contained by PRNs.

The external causalities defined between the steps simplify the complexity of the
step composition. They exactly define the mapping between the RHS elements of
the step i and the LHS elements of the step i+1. Internal causalities connect the
LHS and RHS elements within a transformation step. Therefore, taking both the

internal- and external causalities into account, we can follow the node mapping
between the transformation steps and also within them. The metatypes of the
PRNs and edges, compared to the general case, also simplify the computation
complexity of the algorithm. The metatypes narrows the search space. The
constraints propagated to the PRNs must be checked whether there is any
contradiction between the constraints contained by the PRNs mapped to each
other during the composition. Furthermore, multiplicities that are allowed to be
specified in metamodel-based transformation steps, also need to be taken into
account.

The algorithm works based on the double pushout (DPO) approach concurrency
theorem [10]. The VMTS Transformation Steps Composing (VTSC) algorithm is
as follows.

VTSCOMPOSING(TransformationStep[] TSs, bool exhaustive): TransformationStep[]
 1 compositionList = GETFIRSTSTEP(TSs)
 2 if exhaustive
 3 return VTSRECURSIVECOMPOSING(GETFIRSTSTEP(TSs)
 4 else
 5 foreach Transformation Step stepNext in TSs (except first step)
 6 foreach Transformation Step S in compositionList
 7 initialMapping = CREATEMAPPINGBYEXTCAUS(S, stepNext)
 8 newCompositions = EXTENDMAPPINGBYMETATYPES(
 initialMapping, S, stepNext)
 9 CALCULATEMULTIPLICITIES(newCompositions)
10 ADDTOLIST(newCompositionList, newCompositions)
11 end foreach
12 compositionList = newCompositionList
13 end foreach
14 end if
15 return compositionList

3.2 Self-Composing Metamodel-Based Model Transformation
Steps with

The goal of this section is to provide considerations (algorithm) related to
metamodel-based transformation step composition, namely how to compose
transformation steps with themselves arbitrary times. This type of composition is
required in order to examine the termination of the exhaustively applied
transformation steps.

On the instance layer the rule composition is constructed in [9], also based on the
double pushout (DPO) approach concurrency theorem [10].

Our aim is to work out an equivalent transformation step composition method on
the meta-layer (on the layer of the metamodel-based transformation steps). The
current section provides several examples and an algorithm for transformation step
composition, furthermore, proofs that the result of the composed step created by
the presented algorithm for an arbitrary input model on the instance level is the

same as the result of the original transformation steps. In order to state and prove
the general case formally, we have to examine the composition properties of
several typical transformation step structures. The examined structures are the
tree, inserting and deletion structure steps. The following examples and
considerations discuss the properties of these structures and the possibilities of
their composition with themselves. This type of examination of the transformation
step structures is chosen, because an optional transformation step is built from
these structures. Therefore, if we show and prove the correctness of these
structures one-by-one, then it will be easier to generalize the consideration for the
composition of the general transformation step.

In the following example structure there is no external causality defined, the
transformation step is executed exhaustively. Furthermore, the structures are so
simple that there is only one possible composition between the RHS and LHS
nodes.

Definition. The nodes generated and attached to the input model by a tree
structure transformation step are connected only with one edge to the input
model. A tree structure transformation step does not generate circles into the
model.

Figure 1

Composition of transformation steps with tree structure

An example transformation step with tree structure is depicted in Fig. 1a. The first
application of the step on an input model is presented in Fig. 1b/1. It matches an A

type node with three B type nodes and generates three C type nodes into the
model. The second application of the transformation step (Fig. 1b/2) is executed
on the result of the first execution. In Fig. 1b the dashed lines denote the matched
part of the input model and the created part of the output model. In the second
step, the same A and B type nodes can be matched again, but it is also possible that
only a part of them with new ones or totally new nodes are found by the matcher
algorithm. The algorithm the VMTS uses to compose metamodel-based model
transformation steps with themselves is as follows.

VTSRECURSIVECOMPOSING(TransformationStep originalStep, TransformationStep[]
inComposedSteps, int numOfComposition): TransformationStep[]
 1 if (numOfComposition == 0) return inComposedSteps
 2 foreach Transformation Step S in inComposedSteps
 3 initialMapping = CREATEMAPPINGBYEXTCAUS(S, originalStep)
 4 newCompositions = EXTENDMAPPINGBYMETATYPES(initialMapping, S, originalStep)
 5 CALCULATEMULTIPLICITIES(newCompositions)
 6 ADDTOLIST(newCompositionList, newCompositions)
 7 end foreach
 8 return VTSRECURSIVECOMPOSING(originalStep, newCompositionList, numOfComposition-1)

The transformation step presented in Fig. 1a is composed with itself once and the
result is depicted in Fig. 1c. In the current case the composed step differs from the
original one only in the modified multiplicities. The multiplicities of the matched
and the created nodes vary between well defined limits. Multiplicities must allow
the cardinality values between m and n*m, where m denotes the cardinality of the
original multiplicity, and n the number of the application of the step. The exact
rules for calculating the multiplicities during transformation step composition are
summarized in Table 1.

Table 1
Rules for calculating multiplicities during transformation step composition

Multiplicity in step S1 Multiplicity in step S2 Multiplicity in composed step
p r min(p, r)..p+r

p..s r min(p, r)..s+r
p1..s1 p2..s2 min(p1, p2)..s1+s2

Proposition. Let S be a tree structure transformation step and Sn be the
transformation step resulted by the n times composition of the step S using
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times
on an arbitrary finite input model G0 is equivalent to a single execution of the step
Sn.

Proof. First we examine the case when the transformation step S applied twice for
the input model G0. The composition means multiplicity modification. The match
found during the second application of the step S can contain nodes that are also
matched by the first execution of the step. Therefore, the generated nodes can be
connected to the same nodes or also to different ones. The step S2 expresses the
same notion, because each multiplicities r and p..s from step S are replaced with

the multiplicities r..2r and p..2s in the step S2. The maximum cardinality of the
multiplicities is duplicated. In fact this means the following. The transformation
step S is composed with itself. The lower bound of the allowed cardinality does
not change, but the upper bound must be the sum of the allowed multiplicities in
the original steps on the certain places. Consequently, applying the step S twice is
equivalent to applying the step S2 once. Assume the case that we have a
transformation step Sk that is resulted by the k times composition of the step S, and
also assume that applying the step S k times on the input model G0 equivalent to a
single application of the step Sk. We examine the next step, the composition of the
transformation steps Sk and S. After finding the mapping between RHS nodes of
the steps Sk and LHS nodes of the steps S, the multiplicities must be modified
based on the rules presented in Table 1. Applying the rules for the edges between
mapped nodes it results that the original multiplicities r and p..s of step S in step
Sk+1 must be r..(k+1)r and p..(k+1)s. This means that executing the step S k+1
times on the input model G0 equivalent to a single application of the step Sk+1.

A

B

A

C

B

2

4

2

LHS RHS

A

B

A

C

B
2..4

LHS RHS

4..8

2..4

(a) Inserting Structure
Transformation Step

(c) Combined Inserting
Structure Transformation Step

1 1

2

1..2 1..2

2..4

:A

:B:B

:A

:B:B

:C :C :C :C

(b/1) First Application of the Step (b/2) Second Application of the Step

Input Model Input ModelOutput Model

:A

:B:B

:C :C :C :C :C :C

:B :B

:C :C

:A

:B:B

:C :C :C :C

:B :B:B:B :B:B

Output Model

Figure 2

Composition of transformation steps with inserting structure

Definition. The nodes generated and attached to the input model by an inserting
structure transformation step are connected at least with two generated edges to
the input model. A inserting structure transformation step can generate circles into
the model.

An example for the inserting structure transformation step is depicted in Fig. 2a.
The first and second application on an input model of the step is presented in Fig

2b. The transformation step presented in Fig. 2a is composed with itself once, and
the result is depicted in Fig. 2c.

We differentiate two cases. (i) The inserting structure transformation step deletes
the edge between the matched nodes that are connected through the newly created
node (Fig. 2a). In this case the match is destroyed and cannot be found again. (ii)
In the second case the step does not delete the original edge that connects the
nodes which are connected through the newly created node and edges (Fig. 3a).

Proposition. Let S be an inserting structure transformation step and Sn be the
transformation step resulted by the n times composition of the step S using
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times
on an arbitrary finite input model G0 is equivalent to a single execution of the step
Sn.

Definition. A deleting structure transformation step deletes at least one node from
the input model.

An example for a metamodel-based deleting structure transformation step is
depicted in Fig. 3b/1, it is composed with itself, and the resulted step is presented
in Fig. 3b/2.

Proposition. Let S be a deleting structure transformation step and Sn be the
transformation step resulted by the n times composition of the step S using
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times
on an arbitrary finite input model G0 is equivalent to a single execution of the step
Sn.

A

B

A

C

B

2

4

2

LHS RHS

A

B
2..4

LHS RHS

(a/1) Inserting Structure
Transformation Step

(a/2) Combined Inserting
Structure Transformation Step

1 1

2

1..2

2

1
A

C

B
2..4

2..4

2..4

4..8

1..2
1..2

A

B

A

2

LHS RHS

A

B
2..4

LHS RHS

(b/1) Deleting
Transformation Step

(b/2) Combined Deleting
Transformation Step

1 1..2

A

Figure 3

Composition of transformation steps with inserting and deleting structure

The following proposition states that there is no difference between applying a
sequence of transformation steps or their composed step for an arbitrary input
model. The two transformation result the same model.

Proposition. If the transformation steps k1jj ...SS,S + are applicable

successfully for an input model G0, then a transformation step SC, created from

transformation steps k1jj ...SS,S + using VTSC algorithm, has the same effect on

the input model G0 as the transformation steps k1jj ...SS,S + .

Proof. If the transformation steps k1jj ...SS,S + are applicable successfully for an

input model G0, then it means that the step Sj can be executed on the model G0 and
produces the model Gj, the step Sj+1 can be executed on the model Gj and produces
the model Gj+1, and so on. Each step can be applied on the result of the previous
step, and finally, the steps k1jj ...SS,S + produce the model Gj+k. The step SC

produces the same result on the input model G0 as the transformation steps

k1jj ...SS,S + , because step SC is created considering the causalities between the

steps and all the modifications committed by steps k1jj ...SS,S + . Therefore, step

SC executes all the modifications of steps k1jj ...SS,S + in a single step.

Conclusions

Using the presented approach, we can predict the behavior of a transformation.
Not only its termination, as it is presented in this paper, but also other properties.
For example, the method can be used to examine whether a transformation
validate, guarantee or preserve an optional property of the input model, e.g. an
attribute value of a input model node or a relation between model nodes.

The discussed method is independent from the input models, it makes its decision
based on the transformation steps only, and the control flow model, therefore the
result of a transformation examination holds for all input models.

The presented approach is an offline method; the termination in many cases
depends not only on the VCFL transformation model and transformation steps but
also on the actual input model. A simple constraint can be itself a significant
difference between two steps or an attribute value between two models. The
problem is not trivial. There are certain cases when the method can make a
decision based on the VCFL transformation, and there are other cases when not.

In the cases when the algorithm cannot make decision we can use the design-by-
contract-based VMTS approach [7]. We define transformation steps and specify
them properly with constraints (preconditions and postconditions). If the
transformation is executed successfully, then the generated output model is in
accordance with the expected result described by the steps of the transformation
refined with the constraints. Thus, it produces a valid result.

Termination is an important issue for model transformations. Since model
transformations can become very complex, we consider not only the application of
single transformation steps, but also transformations where step applications are
restricted according to a strict control flow.

Acknowledgement

The fund of “Mobile Innovation Centre” has supported in part, the activities
described in this paper.

References

[1] T. Levendovszky, L. Lengyel, G. Mezei, H. Charaf, A Systematic
Approach to Metamodeling Environments and Model Transformation
Systems in VMTS, ENTCS, International Workshop on Graph-Based
Tools, GraBaTs, Rome, 2004

[2] The VMTS Homepage, http://avalon.aut.bme.hu/~tihamer/research/vmt

[3] OMG UML 2.0 Spec., http://www.omg.org/uml/

[4] G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by
Graph Transformation: Foundations, Vol.1 World Sci., Singapore, 1997

[5] OMG Object Constraint Language Specification (OCL), www.omg.org

[6] D. Plump. Termination of graph rewriting is undecidable. Fundamenta
Informaticae, 33(2):201–209, 1998

[7] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf,
Metamodel-Based Model Transformation with Aspect-Oriented
Constraints, International Workshop on Graph and Model Transformation,
GraMoT, Tallinn, Estonia, September 28, 2005

[8] L. Lengyel, T. Levendovszky, H. Charaf, A Visual Control Flow Language
and Its Termination Properties, International Conference on Information
Technology, ICIT 2005, Transactions on Enformatika Volume 8, ISBN
975-98458-7-3, Budapest, Hungary, October 26-28, 2005, pp. 163-168

[9] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, EATCS Monographs in Theoretical Computer
Science, Springer, 2005 to appear

[10] H. Ehrig, Introduction to the Algebraic Theory of Graph Grammars,
In:Graph Grammars and Their Applications to Computer Science and
Biology, Springer, Ed. V. Claus, H. Ehrig, G. Rozemberg, Berlin, 1979

