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Abstract: Graph rewriting-based model processing is a widely used technique for model 
transformation. Especially visual model transformations can be expressed by graph 
transformations, since graphs are well-suited to describe the underlying structures of 
graphical models. Model transformations often need to follow an algorithm that requires a 
strict control over the execution sequence of the transformation steps. Therefore, 
termination criteria for graph and model transformation systems have become a focused 
area. This work introduces a metamodel-based visual control flow language and discusses 
several consideration related to the termination properties of the presented language. 
Furthermore, it provides algorithms to compose metamodel-based model transformation 
steps in order to support the termination analysis of graph rewriting-based visual model 
processing. 
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1 Introduction 

Visual Modeling and Transformation System (VMTS) [1] [2] is an n-layer 
metamodeling environment which supports editing models according to their 
metamodels, and allows specifying OCL constraints. Models are formalized as 
directed, labeled graphs. VMTS uses a simplified class diagram for its root 
metamodel (“visual vocabulary”). 

Also, VMTS is an UML-based [3] model transformation system, which transforms 
models using graph rewriting techniques. Moreover, the tool facilitates the 
verification of the constraints specified in the transformation step during the 
model transformation process. 

Graph rewriting [4] is a powerful technique for graph transformation with a formal 
background. The atoms of the graph transformation are rewriting rules, each 



rewriting rule consists of a left-hand side graph (LHS) and a right-hand side graph 
(RHS). Applying a graph rewriting rule means finding an isomorphic occurrence 
(match) of LHS in the graph to which the rule is applied (host graph), and 
replacing this subgraph with RHS. 

Model transformation means converting an input model available at the beginning 
of the transformation process to an output model. Several widely used approaches 
to model transformation use graph rewriting as the underlying transformation 
technique. Previous work [1] has introduced an approach – metamodel-based 
rewriting rules –, where the LHS and RHS of the transformation steps are built 
from metamodel elements. This means that an instantiation of LHS must be found 
in the host graph instead of the subgraph isomorphic to LHS. This metamodel-
based approach facilitates to assign OCL constraints to pattern rule nodes (PRNs) 
– nodes of the rules. 

The Object Constraint Language (OCL) [5] is a formal language for the analysis 
and design of software systems. It is a subset of the UML standard [3] that allows 
software developers to write constraints and queries over object models. 

A precondition assigned to a transformation step is a Boolean expression that must 
hold at the moment when the step is fired, and a postcondition assigned to a step is 
a Boolean expression that must hold after the completion of a transformation step. 
If a precondition of a step is not true, then the step fails without being fired. If a 
postcondition of a transformation step is not true after the execution of the step, 
then the transformation step fails. A direct corollary of this is that an OCL 
expression in LHS is a precondition to the transformation step, and an OCL 
expression in RHS is a postcondition to the transformation step. 

In general, the termination of graph rewriting is undecidable [6], but under certain 
conditions it is possible to prove termination for numerous model transformations. 
This paper gives results related to the examination of such conditions. Therefore, 
the motivation of the work presented in the current paper is to support making the 
decision related to termination of metamodel-based visual control flow languages. 
Section 2 introduces the VMTS Visual Control Flow Language (VCFL), which 
termination properties and transformation step composition possibilities are 
discussed in Section 3. 

2 VMTS Visual Control Flow Language 

One of the most important capabilities of a control flow language is the possibility 
to express a transformation as an ordered sequence of the transformation steps. 
Classical graph grammars apply any production that is feasible. This technique is 
appropriate for generating and matching languages but model-to-model 
transformations often need to follow an algorithm that requires a more strict 



control over the execution sequence of the steps, with the additional benefit of 
making the implementation more efficient. 

The VMTS approach is a visual approach, and it also uses graphical notation for 
control flow: stereotyped UML activity diagrams, which is a technique to describe 
procedural logic. UML activity diagrams are intended to describe business 
processes, and workflows. 

In VMTS transformation steps, the internal causality is a relation between LHS 
and RHS elements, it makes possible to connect an LHS element to an RHS 
element and to assign an operation to this connection. An internal causality 
describes what we to do during applying a transformation step (element creation, 
element deletion, attribute modification). The create and modify operations are 
accomplished by XSL scripts. The XSL scripts can access the attributes of the 
objects matched to LHS elements, and they produce a set of attributes for RHS 
element to which the causality point. 

As it is presented through examples in Section 3, the expressiveness of the 
multiplicities in the metamodel-based model transformation steps is high. In 
VMTS both sides of the transformation steps use formalism similar to that of the 
UML class diagram. The same instantiation rules apply to the LHS as to the UML 
class diagram, with two exceptions. (i) An association with the multiplicity * 
matches all the edges of the appropriate type in a given position. (ii) A type can 
appear more than once in the rules. These types are processed by the matching 
algorithm as if they were of different types. However, care is taken that the same 
model element cannot be matched to two different LHS objects. 

The interpretation of the undefined * multiplicity is not evident on the right-hand 
side. In VMTS, this value is determined by the result of the attribute 
transformation. The advantage of this approach is the flexibility that an attribute 
can influence the structure. Therefore, a simple transformation step can have an 
effect on an arbitrary part of the input model. 

Sequencing transformation steps results in a transformation which contains the 
steps in an ordered sequence (S0, S1… Sn-1). Assume the case that the input model of 
the step i (Si) is the model Mi and the result of the Si is the model Mi+1 (where 0 ≤  i 
≤ n-1). In this case the input model of the step i+1 (Si+1) is the model Mi+1. This 
means that during the execution of the step sequence, each step works on the 
result of the previous step. 

The interface of the transformation steps allows the output of one step to be the 
input of another step, in a dataflow-like manner. This is used to sequence 
expression execution. In VCFL, this construct is referred to as an external 
causality. An external causality creates a linkage between a node contained by 
RHS of the step i and a node contained by LHS of the step i+1. This feature 
accelerates the matching and reduces the complexity, because the step i provides 
partial match to the step i+1. 



Branching with OCL Constraints. Often, the transformation that we would like 
to apply depends on a condition. Therefore, a branching construct is required. In 
VCFL, OCL constraints assigned to the decision elements can choose between the 
paths of optional numbers, based on the properties of the actual input model and 
the success of the last transformation step (SystemLastRuleSucceed). 

Hierarchical Steps. The VCFL supports hierarchical specification of the 
transformation steps. High-level steps can be created by composing a sequence of 
primitive steps and can be viewed as separate transformation modules. A high-
level step can contain several simple steps, hiding the details which could be 
unimportant on a specific abstraction level and represents the contained steps as 
coherent units. 

Iteration (Tail Recursion) and Parallel Executions of the Steps. The iteration is 
achieved with the help of the decision objects and the OCL constraints contained 
by them. A decision object evaluates the assigned constraints, and based on the 
results selects a flow edge which could be a follow-up or a backward edge as well. 
Recursion can be solved with the composition of the iteration and external 
causalities. A high-level step can call itself, where external causalities represent 
the actual parameters of the recursive call. The parallel execution of the 
independent transformation steps is supported by the Fork and Join elements. 

In the VCFL, a transformation step has two specific attributes: Exhaustive and 
MultipleMatch [7]. Recall that applying a model transformation step means 
finding a match of LHS in the input model and replacing this subgraph with RHS. 
An exhaustive transformation step is executed continuously as long as LHS of the 
step can be matched to the input model. The MultipleMatch attribute of a step 
allows that the matching process finds not only one but all occurrence of LHS in 
the input model, and replacing is executed on all the found places. 

In VCFL, if a transformation step fails and the next element in the control flow is 
a decision object, it provides the next branch based on the OCL statements and the 
value of the SystemLastRuleSucceed variable. If no decisions can be found, the 
control is transferred to the parent state, and if there is no parent state, the 
transformation terminates with error [8]. 

3 Termination Aspects 

The termination properties of a transformation are really important for model 
transformation. We want to investigate that under which conditions an arbitrary 
VCFL transformation can satisfy termination criteria. 

Definition. A VCFL Transformation is a stereotyped UML activity diagram. A 
VCFL Transformation T defines a strict order of the contained transformation 



steps TSTEPS...SS,S 1-n10 ∈∈ , where S0 is the start step of T. Transformation T 
contains OCL constraints assigned to decision objects to choose between different 
control flow branches, and external causalities between transformation steps to 
support parameter passing. 

Definition. A VCFL transformation T for a finite input model G0 terminates, if 
there is no infinite derivation sequence from G0 via transformation steps 

TSTEPS ∈ , where starting from S0 (start step of the T) steps STEPS  are 
applied as it is defined by the transformation T. 

Termination of transformations is not always guaranteed. If a control flow model 
contains an exhaustive step that can be applied infinitely to the result models, such 
that the transformation does not terminate. 

All derivation sequences over transformation steps TSTEPS ∈  are terminating if 
each transformation step STEPSS ∈  terminate. Since the non-exhaustive 
termination steps terminate, we can state that a VCFL transformation T terminates 
if all exhaustive transformation step STEPSSE ∈  and loop TL∈  terminate. 

In order to examine the termination properties of VCFL exhaustive transformation 
steps and VCFL loops, we need a mechanism to compose the transformation steps. 
This is a way to examine all the possible transformation execution without the 
actual input models. The composed step can equivalently replace the original 
steps, because it produces the same result and imposes the same input conditions 
as the sequence composed of individual rules [9]. Moreover, to examine the 
termination properties of the exhaustive transformation steps we also use the 
composition algorithm. Recursively composing an exhaustively applied 
transformation step SE with itself n times results a transformation step SC we can 
use once for an input model G0 instead of applying the original step SE n times. 

3.1 Composing Metamodel-Based Model Transformation 
Steps 

The VMTS approach uses metamodel-based transformation steps. This means that 
steps are built from metamodel elements, and the LHS and RHS of the steps are 
the metamodels of the matched and produced model parts. 

The composition algorithm takes not only the structure of the steps into 
consideration but also the external- and internal causalities, the metatypes of the 
PRNs and edges and the constraints contained by PRNs. 

The external causalities defined between the steps simplify the complexity of the 
step composition. They exactly define the mapping between the RHS elements of 
the step i and the LHS elements of the step i+1. Internal causalities connect the 
LHS and RHS elements within a transformation step. Therefore, taking both the 



internal- and external causalities into account, we can follow the node mapping 
between the transformation steps and also within them. The metatypes of the 
PRNs and edges, compared to the general case, also simplify the computation 
complexity of the algorithm. The metatypes narrows the search space. The 
constraints propagated to the PRNs must be checked whether there is any 
contradiction between the constraints contained by the PRNs mapped to each 
other during the composition. Furthermore, multiplicities that are allowed to be 
specified in metamodel-based transformation steps, also need to be taken into 
account. 

The algorithm works based on the double pushout (DPO) approach concurrency 
theorem [10]. The VMTS Transformation Steps Composing (VTSC) algorithm is 
as follows. 
 
VTSCOMPOSING(TransformationStep[] TSs, bool exhaustive): TransformationStep[] 
  1 compositionList = GETFIRSTSTEP(TSs) 
  2 if exhaustive 
  3 return VTSRECURSIVECOMPOSING(GETFIRSTSTEP(TSs) 
  4 else 
  5    foreach Transformation Step stepNext  in TSs (except first step) 
  6       foreach Transformation Step S in compositionList 
  7          initialMapping = CREATEMAPPINGBYEXTCAUS(S, stepNext) 
  8          newCompositions = EXTENDMAPPINGBYMETATYPES(  
    initialMapping, S, stepNext) 
  9          CALCULATEMULTIPLICITIES(newCompositions) 
10          ADDTOLIST(newCompositionList, newCompositions) 
11       end foreach  
12       compositionList = newCompositionList 
13    end foreach 
14 end if  
15 return compositionList 

3.2 Self-Composing Metamodel-Based Model Transformation 
Steps with 

The goal of this section is to provide considerations (algorithm) related to 
metamodel-based transformation step composition, namely how to compose 
transformation steps with themselves arbitrary times. This type of composition is 
required in order to examine the termination of the exhaustively applied 
transformation steps. 

On the instance layer the rule composition is constructed in [9], also based on the 
double pushout (DPO) approach concurrency theorem [10]. 

Our aim is to work out an equivalent transformation step composition method on 
the meta-layer (on the layer of the metamodel-based transformation steps). The 
current section provides several examples and an algorithm for transformation step 
composition, furthermore, proofs that the result of the composed step created by 
the presented algorithm for an arbitrary input model on the instance level is the 



same as the result of the original transformation steps. In order to state and prove 
the general case formally, we have to examine the composition properties of 
several typical transformation step structures. The examined structures are the 
tree, inserting and deletion structure steps. The following examples and 
considerations discuss the properties of these structures and the possibilities of 
their composition with themselves. This type of examination of the transformation 
step structures is chosen, because an optional transformation step is built from 
these structures. Therefore, if we show and prove the correctness of these 
structures one-by-one, then it will be easier to generalize the consideration for the 
composition of the general transformation step. 

In the following example structure there is no external causality defined, the 
transformation step is executed exhaustively. Furthermore, the structures are so 
simple that there is only one possible composition between the RHS and LHS 
nodes. 

Definition. The nodes generated and attached to the input model by a tree 
structure transformation step are connected only with one edge to the input 
model. A tree structure transformation step does not generate circles into the 
model. 

 
Figure 1 

Composition of transformation steps with tree structure 

An example transformation step with tree structure is depicted in Fig. 1a. The first 
application of the step on an input model is presented in Fig. 1b/1. It matches an A 



type node with three B type nodes and generates three C type nodes into the 
model. The second application of the transformation step (Fig. 1b/2) is executed 
on the result of the first execution. In Fig. 1b the dashed lines denote the matched 
part of the input model and the created part of the output model. In the second 
step, the same A and B type nodes can be matched again, but it is also possible that 
only a part of them with new ones or totally new nodes are found by the matcher 
algorithm. The algorithm the VMTS uses to compose metamodel-based model 
transformation steps with themselves is as follows. 
 
VTSRECURSIVECOMPOSING(TransformationStep originalStep, TransformationStep[] 
inComposedSteps, int numOfComposition): TransformationStep[] 
  1 if (numOfComposition == 0) return inComposedSteps 
  2    foreach Transformation Step S in inComposedSteps 
  3       initialMapping = CREATEMAPPINGBYEXTCAUS(S, originalStep) 
  4       newCompositions = EXTENDMAPPINGBYMETATYPES(initialMapping, S, originalStep) 
  5       CALCULATEMULTIPLICITIES(newCompositions) 
  6       ADDTOLIST(newCompositionList, newCompositions) 
  7    end foreach  
  8 return VTSRECURSIVECOMPOSING(originalStep, newCompositionList, numOfComposition-1) 

The transformation step presented in Fig. 1a is composed with itself once and the 
result is depicted in Fig. 1c. In the current case the composed step differs from the 
original one only in the modified multiplicities. The multiplicities of the matched 
and the created nodes vary between well defined limits. Multiplicities must allow 
the cardinality values between m and n*m, where m denotes the cardinality of the 
original multiplicity, and n the number of the application of the step. The exact 
rules for calculating the multiplicities during transformation step composition are 
summarized in Table 1. 

Table 1 
Rules for calculating multiplicities during transformation step composition 

Multiplicity in step S1 Multiplicity in step S2 Multiplicity in composed step 
p r min(p, r)..p+r 

p..s r min(p, r)..s+r 
p1..s1 p2..s2 min(p1, p2)..s1+s2 

Proposition. Let S be a tree structure transformation step and Sn be the 
transformation step resulted by the n times composition of the step S using 
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times 
on an arbitrary finite input model G0 is equivalent to a single execution of the step 
Sn. 

Proof. First we examine the case when the transformation step S applied twice for 
the input model G0. The composition means multiplicity modification. The match 
found during the second application of the step S can contain nodes that are also 
matched by the first execution of the step. Therefore, the generated nodes can be 
connected to the same nodes or also to different ones. The step S2 expresses the 
same notion, because each multiplicities r and p..s from step S are replaced with 



the multiplicities r..2r and p..2s in the step S2. The maximum cardinality of the 
multiplicities is duplicated. In fact this means the following. The transformation 
step S is composed with itself. The lower bound of the allowed cardinality does 
not change, but the upper bound must be the sum of the allowed multiplicities in 
the original steps on the certain places. Consequently, applying the step S twice is 
equivalent to applying the step S2 once. Assume the case that we have a 
transformation step Sk that is resulted by the k times composition of the step S, and 
also assume that applying the step S k times on the input model G0 equivalent to a 
single application of the step Sk. We examine the next step, the composition of the 
transformation steps Sk and S. After finding the mapping between RHS nodes of 
the steps Sk and LHS nodes of the steps S, the multiplicities must be modified 
based on the rules presented in Table 1. Applying the rules for the edges between 
mapped nodes it results that the original multiplicities r and p..s of step S in step 
Sk+1 must be r..(k+1)r and p..(k+1)s. This means that executing the step S k+1 
times on the input model G0 equivalent to a single application of the step Sk+1. 
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Figure 2 

Composition of transformation steps with inserting structure 

Definition. The nodes generated and attached to the input model by an inserting 
structure transformation step are connected at least with two generated edges to 
the input model. A inserting structure transformation step can generate circles into 
the model. 

An example for the inserting structure transformation step is depicted in Fig. 2a. 
The first and second application on an input model of the step is presented in Fig 



2b. The transformation step presented in Fig. 2a is composed with itself once, and 
the result is depicted in Fig. 2c. 

We differentiate two cases. (i) The inserting structure transformation step deletes 
the edge between the matched nodes that are connected through the newly created 
node (Fig. 2a). In this case the match is destroyed and cannot be found again. (ii) 
In the second case the step does not delete the original edge that connects the 
nodes which are connected through the newly created node and edges (Fig. 3a). 

Proposition. Let S be an inserting structure transformation step and Sn be the 
transformation step resulted by the n times composition of the step S using 
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times 
on an arbitrary finite input model G0 is equivalent to a single execution of the step 
Sn. 

Definition. A deleting structure transformation step deletes at least one node from 
the input model. 

An example for a metamodel-based deleting structure transformation step is 
depicted in Fig. 3b/1, it is composed with itself, and the resulted step is presented 
in Fig. 3b/2. 

Proposition. Let S be a deleting structure transformation step and Sn be the 
transformation step resulted by the n times composition of the step S using 
VTSRECURSIVECOMPOSING algorithm. Applying the transformation step S n times 
on an arbitrary finite input model G0 is equivalent to a single execution of the step 
Sn. 
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Figure 3 

Composition of transformation steps with inserting and deleting structure 

The following proposition states that there is no difference between applying a 
sequence of transformation steps or their composed step for an arbitrary input 
model. The two transformation result the same model. 

Proposition. If the transformation steps k1jj ...SS,S +  are applicable 

successfully for an input model G0, then a transformation step SC, created from 



transformation steps k1jj ...SS,S +  using VTSC algorithm, has the same effect on 

the input model G0 as the transformation steps k1jj ...SS,S + . 

Proof. If the transformation steps k1jj ...SS,S +  are applicable successfully for an 

input model G0, then it means that the step Sj can be executed on the model G0 and 
produces the model Gj, the step Sj+1 can be executed on the model Gj and produces 
the model Gj+1, and so on. Each step can be applied on the result of the previous 
step, and finally, the steps k1jj ...SS,S +  produce the model Gj+k. The step SC 

produces the same result on the input model G0 as the transformation steps 

k1jj ...SS,S + , because step SC is created considering the causalities between the 

steps and all the modifications committed by steps k1jj ...SS,S + . Therefore, step 

SC executes all the modifications of steps k1jj ...SS,S +  in a single step. 

Conclusions 

Using the presented approach, we can predict the behavior of a transformation. 
Not only its termination, as it is presented in this paper, but also other properties. 
For example, the method can be used to examine whether a transformation 
validate, guarantee or preserve an optional property of the input model, e.g. an 
attribute value of a input model node or a relation between model nodes. 

The discussed method is independent from the input models, it makes its decision 
based on the transformation steps only, and the control flow model, therefore the 
result of a transformation examination holds for all input models. 

The presented approach is an offline method; the termination in many cases 
depends not only on the VCFL transformation model and transformation steps but 
also on the actual input model. A simple constraint can be itself a significant 
difference between two steps or an attribute value between two models. The 
problem is not trivial. There are certain cases when the method can make a 
decision based on the VCFL transformation, and there are other cases when not. 

In the cases when the algorithm cannot make decision we can use the design-by-
contract-based VMTS approach [7]. We define transformation steps and specify 
them properly with constraints (preconditions and postconditions). If the 
transformation is executed successfully, then the generated output model is in 
accordance with the expected result described by the steps of the transformation 
refined with the constraints. Thus, it produces a valid result. 

Termination is an important issue for model transformations. Since model 
transformations can become very complex, we consider not only the application of 
single transformation steps, but also transformations where step applications are 
restricted according to a strict control flow. 
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