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Abstract: The Unified Modeling Language (UML) has become a standard in modeling, but 
it cannot express all the necessary modeling information between the model items. Object 
Constraint Language (OCL) is used to extend the capabilities of UML diagrams, and define 
constraints for the model items. The combination of UML and OCL can be used to realize 
vision of OMG’s Model Driven Architecture (MDA). OCL is based on, but not limited to 
UML modeling diagrams, therefore, it can be used also in generic metamodeling 
environments to validate the models. This paper presents the concepts of an OCL 2.0 
compliant compiler for metamodeling environments. An illustrative case study is also 
provided. 
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1 Introduction 

Models and modeling-based software development is one of the most focused 
research fields. The growing importance of modeling made the customizable, 
flexible modeling languages popular. Domain Specific Modeling Languages 
(DSMLs) represent model elements with customized attributes in a customized 
editing environment. Although the domains are usually well documented and use 
effective solutions, domain specific modeling is rarely used by smaller developer 
groups, because they are very expensive. Metamodeling is a proven solution for 
this problem. The metamodel defines the constraints for the model: it can be used 
as a rule for the model level objects, the attributes of the objects and the 
connection between them. With the customization of the metamodel, the domain 
specific models can be created easily. 

Metamodeling is an efficient technique for defining models by their metamodels. 
Metamodel collects the logical rules of the actual problem domain. Metamodels 
specify the modeling process, what kind of objects the modeler can use, what 
properties they have, what connections we can create between them. In the 
modeling phase, the modeling environment applies rules contained by the 



metamodel. The information represented by a model has a tendency to be 
incomplete, informal, imprecise, and sometimes even inconsistent. For example a 
UML diagram, such as a class diagram, is typically not refined enough to provide 
all the relevant aspects of a specification. Beside other issues, there is a need to 
describe additional constraints about the objects in the model. Such constraints are 
often described in a natural language. Practice has shown that this always results 
in ambiguities. For example a company uses a customized modeling language to 
model the hierarchies, and relations between the employers. The company wants 
to define a model that is only valid if all the employers are older than eighteen 
years. In order to write unambiguous constraints, formal languages have been 
developed. The disadvantage of traditional formal languages is that they require 
modelers with a strong mathematical background, but difficult for the average 
business or system modeler to use. Object Constraint Language (OCL) [1] is a 
formal language that remains easy to read and write. It is a subset of the industry 
standard Unified Modeling Language [2] that allows software developers to write 
constraints and queries over object models. A constraint is a restriction on one or 
more values of an object-oriented model or system. OCL 2.0 is perfect to extend 
the metamodel definitions in order to support model validation. 

Visual Modeling and Transformation System (VMTS) [3] is an n-layer 
metamodeling environment that grants full transparency between the layers (each 
layer is handled with the same methods), and offers graphical metamodel editing 
features. VMTS is implemented using Microsoft .NET Framework [4]. VMTS 
consists of several subsystems. The complete structure can be seen in Fig. 1. 
Attributed Graph Architecture Supporting Interface (AGSI) is responsible for the 
graph database actions and it offers a high-level interface for the other 
components. The Rule Editor and the Rewriting Engine are used for graph 
transformations; Traversing Processors are used for traversing the models in order 
to generate program code or other artifacts.  VMTS Presentation Framework is the 
graphical environment part of VMTS used for displaying and editing the models 
with their proprietary presentation. The Constraint Validator Modules consists of 
two components: the OCL Modul, and the Multiplicity Modul. OCL Modul 
contains the OCL Compiler, and the related functions, Multiplicity Modul is used 
to check if the model contains only those types which are defined in its 
metamodel, and validates the connections between the model elements. 

This paper discusses new results, experiences and consequences evolved from the 
implementation of an OCL 2.0 compiler and further conceptual development of 
constraint checking and handling in a metamodel-based model transformation 
system. This work presents the constraint validation module of a metamodeling 
environment supporting creation, propagation and validation of constraints in 
metamodels. 

 

 



 
 

 

 

 

 

 

Figure 1 
The structure of VMTS 

2 Architecture 

The OCL Module is responsible for all OCL constraint-based validation. It 
contains not only the OCL Compiler itself, but describes how to define and use 
these constraints. The OCL Module checks the metamodel containing OCL 
constraints for the instance models. The OCL Module is not a constraint 
interpreter, since VMTS generates validation code based on the metamodel 
containing OCL constraints (the constraints are attached to the metamodel items), 
then it compiles a binary from the generated code, and the instance models of the 
metamodel is checked by compiled binary against the constraints (Fig. 2). This 
method facilitates determining the complexity of the constraint validation method. 

 
Figure 2 

OCL Module 

Implementing a compiler is in general a complex task consisting of several well-
defined subparts. The input of a compiler is a textual file written in the source 
language, and the output is a textual file or a binary in the target language. The 
source language and the target language can be the same or different. The two 
main parts of the compilation are: (i) the analysis of the source language input, 



and (ii) the generation (synthesis) of the target language output based on the 
retrieved semantic information. Accordingly, the OCL Compiler realized in 
VMTS consists of several parts (Fig. 3). First, the user defines the constraints in 
OCL, then the constraint definitions are parsed and syntactically analyzed. The 
Syntax tree does not contain every necessary information, it should be extended 
e.g. with type information, and implicit self references. This amendment is 
performed in the semantic analysis phase, and it produces the Semantic Analyzed 
Syntax tree. As the next step, the constructed tree is transformed to a CodeDom 
tree. CodeDom is a .NET-based technology that can describe programs using 
abstract trees and it can use this tree representation to generate code to any 
languages that is supported by the .NET CLR (like C#, Visual Basic or Java). 
Using CodeDom, the generated source code is syntactically correct in all cases; 
our task is only to deal with the appropriate semantic content. Finally, the 
compiler transforms the CodeDom tree to C# source code, it compiles and builds 
it. The output of the OCL compiler is a binary executable (a .dll file) that 
implements the OCL constraint. 

Figure 3 
The structure of the OCL Compiler 

3 The Compiler 

3.1 Lexical Analysis 

Lexical and syntactic analysis are realized using the tools Flex [5] and Bison [6]. 
These tools are optimized and well-tested solutions to syntax tree generation, both 
of them were used in thousands of software projects. Unfortunately Flex and 
Bison tools use ANSI C code, but they were relative easy to integrate in VMTS. 

The first step of the lexical analysis is the tokenization, which parses the source 
code and reads lexical patterns (tokens) form it (e.g. identifiers (name) and the 
keywords of the language). Tokenization eliminates the whitespaces as well as 



comments. Tokenization is achieved by a table, which contains the keywords. The 
result of this process is a sequence of tokens, which contains the meaning of the 
source program. Tokenization is made by Flex. 

3.2 Syntactic Analysis 

The next step is to create the syntax tree using the tokens. The OCL specification 
is used to construct the grammar rules for this step. The task of the syntactic 
analysis is to find the deduction which generates the source code of the program, 
starting from the sentence symbol (S). The analyzer reads the sequence of the 
tokens, and, using the production rules, it generates an Abstract Syntax Tree 
(AST), which is a model of the program that we want to compile. The AST is a 
direct association between the rules in the grammar and the nodes in the tree, and 
it is purely an abstract representation of the syntax, modeled as a tree [7] [8]. The 
inner nodes of the AST contain no terminal symbols, while the leaves contain the 
tokens. The generation of the AST is possible if and only if the program is 
syntactically correct [9]. 

The OCL specification [1] uses EBNF notation for the grammar specification. 
This EBNF description had to be modified, and simplified in certain places to be 
able to process it with Bison. The simplification does not reduce the expression 
power or the language capabilities, because the information avoided by the 
simplification is reconstructed in the semantic analysis step. 

The first problem was with the EBNF specification that it uses the ? (optional 
element), the * (0..* multiplicity) and the + (1..* multiplicity) notations. 
These symbols had to be modified in order to be able to process to Bison. Table 1. 
contains the original and the modified rules. 

Original rules Reworked rules 

A -> b c? d A -> b d  |  b c d 
A -> b c* d A         -> b optionalC d 

optionalC -> /* empty */ 
          |  optionalC c 

A -> b c+ d A         -> b optionalC d 
optionalC -> c  
          |  optionalC c 

Table 1 
Reworked EBNF rules for Bison 

The second problem is that several rules in the OCL specification cause 
shift/reduce or reduce/reduce conflicts. To solve this problem, the rules had to be 
transformed. There are rules that can be transformed, divided, or unified to 
support the specification, but there are rules that needed to process additional 



(semantic) information. For example, both VariableExpressions and 
AttributeCalls can be defined by a single name (the name of the variable or the 
attribute). This two case can not be distinguished at the level of the tokens, 
because the compiler should check whether there is a variable defined with the 
name (and the current expression is in the scope of the variable), or the model 
items has an attribute with the name. There are five simplification groups that 
cannot be solved without semantic information: 

• AttributeCall can conflict with VariableExpression 

• NavigationCall can conflict with AttributeCall 

• VariableExpressions can conflict with AttributeCalls 

• EnumerationLiterals can conflict with AttributeCalls 

• Iterators with an overridden operation can conflict with 
Attribute/NavigationCall 

The complete OCL specification can be found on the VMTS homepage [3]. 

3.3 Semantic Analysis 

The text of the constraint is tokenized, and the syntax tree is constructed. The next 
step is to analyze the syntax tree semantically, and add all information that is 
required by the further steps. In VMTS this step begins with a substep of 
interoperability communication between the unmanaged code generated by Bison, 
and the managed code of VMTS. Fortunately this substep is relative easy: the 
unmanaged data structure can be fit the managed structure using the .NET 
recommendations. 

With the syntax tree constructed by Bison there are three problems. (1) OCL 
allows leaving out the self identifier if it does not cause ambiguity. These 
identifiers are required to generate code from the constraints. (2) The code 
generation and, generally, the type checking require the type information included 
in the nodes. (3) During the syntax tree construction there was a few 
simplifications that should be corrected. 

The missing self identifier is the easiest to handle. If the currently processed node 
is a NavigationCall, AttributeCall or OperationCall (i.e. the node uses some kind 
of model information) then it is recursively examined. The self identifier should be 
inserted only if the innermost expression is not self. This algorithm ensures that 
every model-based operation use self as the start point. Model-independent 
operations (like definition of temporary variables) do not need self (neither in the 
code generation, nor according to the OCL specification). 

In the OCL Compiler, we cannot use the traditional symbol table, because the 
symbols are not in the code to be compiled, but it must be obtained from another 



place, namely, from the VMTS model database. Therefore instead of the static 
symbol table, we use a dynamic solution. The nodes in the syntax tree are 
decorated with the appropriate type information (the type information is added to 
the nodes in the tree) and a dynamic symbol table is also created (for faster access 
of the type information). The decoration of the nodes is combined with type 
checking. The analysis starts at the root of the tree. If the type checking fails then 
the compiler throws an error message, if it succeeds then the child nodes are 
processed recursively. 

Type checking can be handled in many ways, but if the decorated type information 
not only defines the base type of the node (e.g. Integer), but also describes the 
available operations with the type of the result, then the type checking is simple. 
To support this, the compiler defines base classes for the available types, and all 
type information contains an instance of the appropriate type. The bases classes 
are classes supporting OCL base types (e.g. String, Set, Bag) and the model types 
(ModelItem, ModelAttribute). These classes contain a common function 

GetTypeInfo (string methodName, object[] additionalParam) 

This function returns with a type of the operation identified by methodName (or 
null if the operation is not defined for the current type). In general this information 
could be gained also by using .NET Reflection, but there are certain methods (e.g. 
intersection in Bag), where the type of the result depends on the parameters (here 
it is solved using the additionalParam parameter). In summary type information 
can fully describe the available operations and the result types. 

The last problem is the reconstruction of the simplifications made in the 
syntactical analysis. Each of the five simplification groups should be handled 
separately, but the algorithm behind is the same for each group: (i) The node is 
processed as long as the required semantic is not known (this means typically the 
processing the first child node). (ii) We check the model information (whether the 
model has an attribute with the name) or the variable-scope information (whether 
there is a variable defined with that name in the scope) and check whether the type 
of the node should be changed. (iii) If the type of the node has changed, the 
compiler generates or modifies the new node structure, swaps the old and the new 
node in the tree and analyzes the new node (iv) If the type of the node was correct, 
then processing the node continues. Fortunately, the changes made in the type of 
the node do not affect the ancestors of the node. 

3.4 Code Generation 

The syntax tree was semantically analyzed; therefore it contains all the necessary 
information required by the code generation. Code generation is realized using the 
System.CodeDom namespace of .NET Framework [10]. This means that the code 
generation is a syntax tree composition, from which the framework generates the 



source code. CodeDom has many advantages, for example, it supports the code 
generation for many languages, and syntax checking in the generated source code 
can be avoided, since CodeDom ensures that it is be syntactically correct in all 
cases. 

OCL constraints can be of five base types: Initial Values, Derivation Rules, 
Invariants, Virtual Attribute or Operation Definitions and OperationConstraints. 
The current implementation of the OCL compiler handles only the invariant types 
in the code generation, because only this type of constraints can be used to 
validate a static model (a model that can not change its state). The non-invariant 
types are semantically analyzed, only the code generation steps does not compile 
them into source code. 

The generated source code should support the operation of the OCL-based types 
defined in the OCL specification. This means that either the generated source code 
should contain the operation logic, or a class library is required with the base 
classes, and the source code instantiate the classes and use them. The first solution 
is neither elegant, nor efficient, thus, VMTS uses the second solution. The 
compiler already has classes for the base types (recall the type information 
checking part of the semantic step). These classes are extended with the necessary 
operations and they are used in the implementation. Using theses classes the 
operations contained by the constraints can easily be expressed in the C# 
language. While the version of C# used in development does not support class 
templates, the implementation of the collection types is more complex, than it 
would be with generics. 

The transformation of the syntax tree to the CodeDom tree is easy, because each 
node type has an appropriate code sequence i.e. CodeDom tree branch. Packages 
are transformed to namespaces, contexts are realized with classes, and constraint 
expression as public methods. Contexts have a self attribute that is used the same 
way as in the OCL expressions; this attribute is initialized in the constructor of the 
class. To handle the invariants simply, the context class has always a method 
(checkInvariants) that calls the methods of the invariants one after the other. 

There is only one decision left that deserves word in the Syntax tree to CodeDom 
transformation. The OclExpression can be transformed either to classes, methods, 
or simple code expressions. The simpler the generated CodeDom tree is, the faster 
the binary executer will be. If there is a separated class for every OclExpression, 
then the source code is well separated, easy-to-read, but it contains a lot of 
redundancy. If the OclExpressions are handled as simple code expressions, then 
source code is very small, but neither user-friendly, nor easy to debug. Therefore 
in VMTS the OCLExpressions are translated as methods. This decision facilitate 
the code generation for complex OclExpressions like iterators. 

The source code generation based on a CodeDom tree is a simple function call, 
and the .NET technology offers also functions to compile and build the 
constructed source code. 



4 Case Study 

Using a case study, we introduce how VMTS generates source code from a simple 
OCL constraint. The case study is about a computer manufacturer company that 
makes CDs, flash memories, and pen drives. The models are used for statistical 
calculations. Although both the constraint example and the model itself are very 
simple, they are useful to see how the compiler works. 

 
Figure 4 

Metamodel of the Company 

The metamodel of the case study is shown in Fig. 4. The attributes are not visible 
in the picture, Company has three attributes: Name (string), Location (string), 
Income (annual income in Euros, integer). All products have two attributes: 
Capacity (in Mbs, integer), and serialNumber (string). 

Without constraints there are no validation facilities in the model, a CD with 1Mb 
capacity, or a Company with fictive location can be created without any problem. 
The metamodel definition should be extended. 

The example constraint (Fig. 5) is used to validate the capacity of the CDs. The 
constraint supposes the capacity of the CDs is always 650Mb (to make the 
constraint simpler). 

package CaseStudyPackage 
context CD 
 
inv capacityChecker:  
 Capacity = 650 
 
endpackage 

Figure 5 
Capacity constraint 

 



Figure 6 
Capacity constraint – syntax tree 

First, the OCL compiler constructs the syntax tree (Fig. 6) using the grammar 
rules. The root is the OCLFile node that is not the par of the OCL standard, but 
allows defining multiple packages in one validation source. The syntax tree shows 
the structure of the OCL source file in an expressive way. This expression 
contains an only constraint, namely, the capacityChecker invariant constraint that 
contains a simple OclExpression to compare the value of an attribute (Capacity) to 
a literal (650). Second, the semantic analysis processes the syntax tree. The nodes 
are decorated with type information, and the missing self reference is inserted 
(Fig. 7). This time each node in the syntax tree has its correct type, hence, the third 
step of semantic analysis can be skipped. At the end of the syntax tree analysis the 
nodes has correct type information (e.g. the type of the outermost OclExpression 
in Fig. 7 is Integer) 

 

 

 

 

 

Figure 7 
Compiler inserted self node 

The last step is the code generation from the syntax tree. The source code (Fig. 8) 
uses the concepts introduced earlier: a package is transformed to a namespace, a 



context to a class, an invariant to a method. The self value is provided to access 
the model attributes, and the checkInvariants method to validate the model. The 
two parts of the relation (Capacity = 650) are realized by two methods according 
to the tree representation. 

namespace OclRuntime.Generated.CaseStudyPackage  
{ 
 public class CD  
 { 
  ModelItem self; 
 
  public CD()  
  {self=new ModelItem(2282);} 
 
  public OCLBoolean checkInvariants() 
  {return Constraint_34_capacityChecker();}   
 
  private OCLBoolean Constraint_34_capacityChecker() 
  {return (AttributeCall_39() == Literal_45());} 
 
  private OCLInteger AttributeCall_39() 
  {return self.Capacity;} 
 
  private OCLInteger Literal_45()  
  {return 650; } 
 } 
} 

Figure 8 
The generated source code  

Conclusions 

This paper has presented the main concepts of an OCL Compiler in an n-layer 
metamodeling system. The paper has discussed the steps in depth from the lexical 
and syntactic and semantic analysis to the code generation. The OCL and 
metamodeling-based problems and its solutions were focused. Although the OCL 
Compiler was realized mainly using the .NET technology, the solutions and 
concepts presented in this work can be useful to another constraint compiler 
processes. The solutions were presented using an illustrative case study that has 
shown the underlying mechanisms in operation. 

The presented OCL Compiler is useful to validate the models, but neither the 
generated code, nor the compiler contains optimization algorithms. Therefore the 
presented method can validate the models, but it can use more resources then 
necessary. For example the generated code above has a separated code for 
Literal_45 in turn the expression “650” could be inserted directly into the code 
(because it is a primitive literal type). 



Another weakness is that the OCL specification does not have a formalism to 
define custom error messages. If an invariant fails, the user does not receive any 
additional information about the reason of the failure. Since the OCL standard 
does not handle it but the users may need this feature, the compiler and the 
framework should offer a solution. 

Future work focuses primary on these fields, and extends the OCL Compiler to 
support the aforementioned functions missing. 
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