
SSDDM: Distance Metric for Graph-based Semi-
structured Data

István Soós, Tihamér Levendovszky,Hassan Charaf
Department of Automation and Applied Informatics
Budapest University of Technology and Economics
H-1111, Goldmann Gy. ter 3.
Budapest, Hungary
email:{istvan.soos, tihamer.levendovszky, hassan.charaf}@aut.bme.hu

 Abstract: Data mining of semi-structured data (data with no exact schema) is an
emerging field of interest. Data mining algorithms such as clustering, classification
need to have a metric distance for the defined data records. The most natural rep-
resentation for semi-structured data is the graph-representation with labeled nodes
and edges. Graph-edit distance measure can be used for comparing the similarity of
two record of data, but semi-structured data can contain several attached attributes,
values. It is shown in this paper that a graph distance metric can be extended to
semi-structured data, preserving the properties of metric distance. This metric dis-
tance (SSDDM) can be used for classification of large data collections and other
data mining algorithms.

Keywords: data mining, metric distance, semi-structured data

1 Introduction
Data mining, data warehouses, and information extraction algorithms are one of the
most important parts of computer automation. It is a non trivial process of discov-
ering previously unknown and potentially useful information from large databases.
The data must be converted into a specific, structured format, and structure-aware
algorithms are executed for ”mining”. The basic data mining algorithms for these
structured data (association rules, classification, clustering) are fairly developed. We
use structured data if the storage schema and the information carried by the data is
the same. The currently available and the future data records can be written with
the same and constant data schema. Relational database management systems are
designed and optimized to work with structural data, and decision support systems
are planned to work with these relational, structured databases.
By semi-structured data, we mean that although the data may have some structure,
the structure is not as rigid, regular, or complete as the structure required by tradi-
tional database management systems [1]. If the structure of the data storage does not
match the information content defined by the semantics of the data, we can use semi-
structured data representation. The most natural representation of semi-structured
data is the graph representation with labeled nodes and edges. Each node can hold
one or more value, and can be connected with other nodes with directed and labeled
edges. The direction of edges indicates the ”hierarchy” of the objects, but it is not a

strict hierarchy: it is data and relationship description.

Figure 1. Semi-structured data example

Figure 1 describes a sample semi-structured data scenario fragment. A weather
station was created by John, who lives in London. The location of the station is
2110 meters above sea level, in the mountains (other attributes are not displayed
on the graph), and the trip from London (from John’s home) to the mountain costs
e121 and takes 180 minutes. Attributes are attached to vertices (mountain) and
edges (trip) as well.
For cluster-based data mining and information extraction, a distance metric is needed.
A distance measured fullfills the properties of a metric:

• d(A,B) = 0 ⇐⇒ A = B

• d(A,B) = d(B,A)

• d(A,B) ≤ d(A,C) + d(C,B)

Graph distance metric [2] is applicable for graph based structures, but not enough
for semi-structured data mining algorithms. Applying graph-only metric loses the
distance information hidden in attributes eg. the cost of the trip or the age of the
creator (John).

2 Related Work
The theory, the storage, and query mechanism of semistructured data is elaborated
in ([1], [3], [4], [5], [6]). The data mining algorithms for these problems ([7], [8])
are expected to come closer to the structured algorithms in a period of short time.
Graphs are not only the data structure layer of semi-structured data, but they are
general, useful and powerful data structures in a variety of applications. Computer

vision, molecular research, pattern recognition, software modeling, geographical
information systems use graphs as well. These modern computationally and data
intensive applications require efficient data storage mechanisms. The storage and
query algorithms have to focus on the ”most likely” data retrieval or nearest neighbor
search [9].
Clustering and classification algorithms need to have a metric function for measur-
ing the distance between objects. For structured records, these distance functions
are evident, because the attributes and the columns of the records can be mapped
together, the measurement unit can be normalized. For graph-based structures, the
distance function is harder to define. First, a mapping between the vertices need to
be calculated for each measured graph pair, and with the mapping information, the
attribute-based distance is applicable.
Distance measures are related to graph similarities, graph and subgraph isomor-
phism. Graph isomorphism ([10], [11], [12]) is a very natural measure of graph
similarity, but minor differences could influence the efficiency of the measurement.
Errors, distortions, and ”bad-luck” modifications can be substituted by the applica-
tion of edit distance [13] or histograms of graphs. Using the edit distance, we have
to define the deletion, creation and substitution costs of a vertex or edge operation
of the graph, but there is no universal cost rate, it depends purely on the applica-
tion domain what to use. Another way for calculating distance is finding the largest
common subgraph of two graphs ([2]). Our work relies on a simple graph distance
metric definition [2]. It is shown that the following distance function is metric:

d =
|mcs(G1, G2)|
max(|G1|, |G2|)

(1)

We will show, that it can be extended for a semi-structured domain. The attribute
mapping of the vertices will be calculated with the maximal common subgraph map-
ping, and the distance function will be based on the number of attributes attached.

3 Semi-structured Data Graph Distance
At the beginning of this section, a formal definition is shown for semi-structured
data. A distance metric will be introduced in two steps: first for weighted graphs,
then for semi-structured data defined.

3.1 Definitions

A semi-structured data-graph(SSD-G) is a 7-tupleG = (V,E, µ, ν, ω, φ, ψ) where:

• V is a set of finite vertices

• E ⊆ V × V is the set of directed edges

• µ→ LV is a function assigning labels to the vertices

• ν → LE is a function assigning labels to the edges

• ω : V → {κ→ υ} is a function assigning set of key-value mapping pairs to
the vertices

• φ : E → {κ→ υ} is a function assigning set of key-value mapping pairs to
the edges

• ψ : {κ→ υ} is a function assigning set of key-value mapping pairs to the
graph

Given aG = (V,E, µ, ν, ω, φ, ψ) SSD-G,semi-structured data-subgraph(SSD-
SG) is a 7-tupleGS = (VS , ES , µS , νS , ωS , φS , ψS) such that:

• VS ⊆ V

• ES = E ∩ VS × VS

• µS : {(v → Lv) ∈ µ : v ∈ VS}

• νS : {(e→ Le) ∈ ν : e ∈ ES}

• ωS : VS → {κ′ → υ′} is a function assigning set of key-value mapping pairs
to the vertices and there is no predefined relationship withω

• φS : ES → {κ′ → υ′} is a function assigning set of key-value mapping pairs
to the edges and there is no predefined relationship withφ

• ψS : {κ′ → υ′} is a function assigning set of key-value mapping pairs to the
graph and there is no predefined relationship withψ

The SSD-SG is a subgraph of the original graph, without considering theω, φ, ψ
informations attached to it. Please note, that the definition we use is very permis-
sive, because our experience shows that a more restrictive definition causes more
processing power without any advantage. Restrictingω, φ, ψ information, the max-
imal subgraph matching algorithm will be harder to calculate.

Given aG1 = (V1, E1, µ1, ν1, ω1, φ1, ψ1) andG1 = (V2, E2, µ2, ν2, ω2, φ2, ψ2)
SSD-G,semi-structured data - common subgraph(SSD-CSG) is a 7-tupleC =
(VC , EC , µC , νC , ωC , φC , ψC) such that:C is a SSD-subgraph ofG1 andC is a
SSD-subgraph ofG2.

The SSD-common subgraph is a common subgraph of the original graphs, without
the restrictions ofω, φ, ψ functions. A common subgraphC of G1,G2 is maximal,
when there exists no other common subgraph ofG1, G2 that has more nodes than
C. The maximal common subgraph ofG1,G2 is denoted withmcs(G1, G2).

The definitions are self-descriptive, considering the fact, that all semi-structure defi-
nition is about extending the graph definitions with attached attributes. The attached
attributes do not conflict with the graph structure or any graph algorithms involved.
We refer tograph isomorphismandsubgraph isomorphismas regular graph-related
expressions, there will be no distinctions at the domain of semi-structured data.

3.2 Graph Distance Metric with Weights

First we show, that the graph distance metric can be extended with node-attached
weight attributes. Letρ : V → {N \ 0} an additional positive weight function for
vertices. For a given graphG = (V,E, µ, ν) andρG we can construct a new graph
G′ = (V ′, E′, µ′, ν′) with the following algorithm:

• for eachn ∈ V there is aρn − 1 ≥ 0

• we createR = (VR, ER, µR, νR) such as|VR| = r, ER ≡ VR × VR and
µR, νR are universal, unique identifiers for each node and edge. For the case
r = 0 R will be an empty graph.

• we connectn ∈ V with R, the following way: create a new edge fromn to
everynR ∈ VR with the labelve, whereve is a universal unique identifier.

Universal unique identifierscan be obtained from a generated pool or sequence,
like UUID#1, UUID#2, ... or any other UUID algorithm. For a givenG and a single
constructed graphR, the attachment is denoted by:R ·G

Proposition 1. GivenG1 = (V1, E1, µ1, ν1), G2 = (V2, E2, µ2, ν2) andG′ algo-
rithm above, the maximal common subgraph of the initial graphs will be the same:
mcs(G1, G2) = mcs(G′1, G

′
2)

Proof: The µR function is universal and unique, it can not be matched with any
other node, the additionalVR nodes do not affect the maximal common subgraph
matching, because universal unique identifiers differ from any other identifier by
definition.

Proposition 2. Given the graphG1 = (V1, E1, µ1, ν1) andG2 = (V2, E2, µ2, ν2),
their maximal common subgraphS := mcs(G1, G2) = (VS , ES , µS , νS) and some
constructedR = (VR, ER, µR, νR) for n ∈ S, ρS , and bijective functions for sub-
graph isomorphism

f1(nS) = vG1 ∈ V1 ∀nS ∈ VS , f
−1
1 (vG1) = nS ∈ VS

f2(nS) = vG2 ∈ V2 ∀nS ∈ VS , f
−1
2 (vG2) = nS ∈ VS

If R is attached toG1 andG2 at the nodesvn,1 = f1(n) (G′1) andvn,2 = f2(n)
(G′2), the vertex count for the maximal common subgraph is:|mcs(G′1, G′2)| =
|mcs(G1, G2)|+ |R|.

Proof: It follows from the definition of maximal common subgraph:R = mcs(R,R),
mcs(G1 ·R,G2 ·R) =mcs(G1, G2) ·R, becauseR is distinct graph from bothG1

andG2.

Proposition 3. GivenG1, G2, S, n, f1, f2, vn,1, vn,2 as Proposition 2, the constructed
graphR1 = (VR,1, ER,1, µR,1, νR,1) for G1, R2 = (VR,2, ER,2, µR,2, νR,2) for

G2 and their maximal common subgraphR = mcs(R1, R2) |R| > 0. After at-
tachingR1 andR2 toG1 andG2, the maximal common subgraph is the following:
mcs(G1 ·R1, G2 ·R2) = mcs(G1, G2)·mcs(R1, R2) and|mcs(G1 ·R1, G2 ·R2)| =
|S|+ |R|

Proof: It follows from the definition of maximal common subgraph, becauseR1

andR2 are distinct graphs from bothG1 andG2, they are attached to the identical
(mapped) vertex, and they only extend the graph matching with their maximal com-
mon subgraph.

Proposition 4. Attaching graphR to either of the graphG1 orG2 affects the max-
imum common subgraph in one of the ways mentioned above (Proposition 1-3).
Given the the weight functionρG and its bidirectional mapping with the graphR, a
new graph distance metric can be defined with weight functions for nodes, based on
the graph metric defined in [2]. Given graphsG1 = (V1, E1, µ1, ν1, ρ1) andG2 =
(V2, E2, µ2, ν2, ρ2), their maximal common subgraph isS = (VS , ES , µS , νS , ρS) :=
mcs(G1, G2), where the weight functionρS has the following property:

ρS ≤ min(ρ1(f1(n)), ρ2(f2(n))) ∀n ∈ VS (2)

The graph distance metric with weights is defined the following:

d(G1, G2) = 1−

∑
n∈VS

ρS(n)

max

(∑
v∈V1

ρ1(v),
∑
u∈V2

ρ2(u)

) (3)

Proof: The sum of weights can be originated in graph construction and the graph
metric in [2] as follows:
We create the unique extensions for graphs as the algorithm in be beginning of
this chapter:G′1 for G1, G′2 for G2, S′ for S with the special property for each
vertex: ∀n ∈ VS Rn = mcs(Rf1(n), Rf2(n)) and |R| = r = ρS(n) − 1. We
can create such an attached graph, becauseρS(n) ≤ min(ρ1(f1(n)), ρ2(f2(n)))
∀n ∈ VS . Obviously,S′ is the maximal common subgraph of the two new graphs
S′ = mcs(G′1, G

′
2).

It is an unambiguous mapping from the weight of the graphs and subgraph to the
special constructed graphs and subgraph. But for non-weighted graphs, we have
a graph metric (1) [2]. The metric for the constructed graphs is equivalent to the
distance function for weighted graphs.

3.3 Semi-structured Distance Metric

In this section is is shown that the semi-structured data graph can be expressed as
the discrete weight graph above, then the generalization of the continuous range is
discussed.

For a givenG = (V,E, µ, ν, ω, φ, ψ) SSD-G we defineρ the following:ρ′ = |ψ| for
the attached graph properties, andρ(n ∈ V) = 1 + |ωn|+ |φn→V | for the vertices
and edges.

Proposition 5. For a givenG1 andG2 SSD-G and their maximal common subgraph
S with the propertiesωS = ω1

⋂
ω2 φS = φ1

⋂
φ2 ψS = ψ1

⋂
ψ2 the following

distance is a metric:

d(G1, G2) = 1−

ρ′S +
∑

n∈VS

ρS(n)

max

(
ρ′1 +

∑
v∈V1

ρ1(v), ρ′2 +
∑
u∈V2

ρ2(u)

) (4)

Proof: Forρ′ = |ψ| we can define a new, attached and distinctR for any graph. It is
not attached to vertices as the attachments before, it is connected separately, and is
the property of the graph only. We have new graphs and subgraph, and Proposition
4 is applicable, because of (2).

Proposition 6. ρ : V → Q+ is applicable.

Proof: Everyρ1, ρ2 andρS value has a common denominator:d. If all ρ is multi-
plied byd, Proposition 5 is applicable, becaused · ρi ∈ N+.

Proposition 7. For a givenG1 andG2 SSD-G and their maximal common subgraph
S with the attribute distance functionρS({κ → υ}) =

∑
ακ(υ1, υ2) where0 ≤

ακ ≤ 1, ακ ∈ Q+ andακ(υ1, υ2) = 0 if υ1 or υ2 is not defined, the following
distance is metric(SSDDM):

d(G1, G2) = 1−

ρ′S +
∑

n∈VS

ρS(n)

max

(
ρ′1 +

∑
v∈V1

ρ1(v), ρ′2 +
∑
u∈V2

ρ2(u)

) (5)

Proof: It follows from Proposition 5 and 6.

4 SSDDM Algorithm
We introduce a simple pseudo-code description of the distance algorithm. The no-
tation and the syntax is simplified. Furthermore, we assume familiarity with an
object-oriented language.

function double SSDDM (Graph G1, Graph G2) {
// calculating MCS
Mcs_Data mcs=maxCommonSubgraph(G1, G2);

// subgraph
Graph S = mcs.getSubGraph();
// mapping informations (f1, f2)
Graphmapping mapS_G1 = mcs.getMap1();
Graphmapping mapS_G2 = mcs.getMap2();

// setting counters
double rho_G1 = calculateFullRho(G1);
double rho_G2 = calculateFullRho(G2);
double rho_S = S.numberOfVertices();

// calculating rho of subgraph
foreach (Vertex v_S in S) {

// get mapped vertex of graphs
Vertex v_G1 = mapS_G1.get(v_S);
Vertex v_G2 = mapS_G2.get(v_S);

// get omega and phi attributes
Map om_G1 = v_G1.getOmega();
Map om_G2 = v_G2.getOmega();
Map phi_G1 = v_G1.getPhi();
Map phi_G2 = v_G2.getPhi();

// intersect attributes
rho_S += intersect(om_G1, om_G2);
rho_S += intersect(phi_G1, phi_G2);

}

// intersect psi attributes
rho_S += intersect(G1.getPsi(), G2.getPsi());
// calculating distance
return 1-(rho_S / max(rho_G1, rho_G2));

}

// intersection is for calculating the
// common parts of the attribute maps
function double intersect(Map m1, Map m2) {

// result is the distance of the
// map parameters
double result = 0;
// we have to iterate on one
// of the maps
foreach (Key k in m1) {

Value v1 = m1.get(k);
Value v2 = m2.get(k);
// invoking alpha function
// based on key and values
result += alpha(k, v1, v2);

}

return result;
}

// calculating rho for a full graph
// is counting the number of nodes
// and the size of omega, phi, psi
// attributes
function double calculateFullRho(Graph g) {

double result = 0;
// adding number of vertices
result += g.numberOfVertices();

// iterating vertices for
// omega and phi
foreach (Vertex v in g) {

result += v.getOmega().size();
result += v.getPhi().size();

}
// adding psi
result += g.getPsi().size();
return result;

}

5 SSDDM Calculation Example
The distance function is explained on the following example. TheG1 graph will
be the graph on Figure 1 (v1 = person: John,v2 = place: London,v3 = place:
mountain,v4 = building: weather station) andG2 will be the graph on Figure 2
(u1 = person: Mary,u2 = place: New York,u3 = organization: MegaCorp).

Figure 2. Other SSD-graph example

The maximal common subgraph calculation gives the result of two vertices we
present in Figure 3.

Figure 3. Maximal common subgraph calculation

Based on the graph distance metric (1) the distance measure is the following:

d(G1, G2) = 1− 2
max(3, 4)

= 0.5

If we consider the attached attributes of the graph (5), the distance measure will be
the following:

ρ′S = 0, ρ′1 = 0, ρ′2 = 0∑
v∈V1

ρ1(v) = 6 + 6 + 4 + 6 = 22

∑
u∈V2

ρ2(u) = 7 + 3 + 3 = 13

∑
n∈VS

ρS(n) = (2 + α(v1, u1)) + (1 + α(v2, u2))

α(v1, u1) = 0 + 0 + 1 +
60− |45− 42|

60
= 1.95

α(v2, u2) = 1 + 0 = 1∑
n∈VS

ρS(n) = (2 + 1.95) + (1 + 1) = 5.95

d(G1, G2) = 1− 5.95
max(22, 13)

= 0.7295

In this example the distance measure that we have constructed indicates less simi-
larity (= more distance) than the distance measure calculating only with graph ver-
tices. Based on the semantics of the data, it is fairly correct. The common subgraph
shows that the common part of the two graphs is the following: we have two mar-
ried, almost the same age (42-45) people, who are living in a city. Everything else
is different: their names, sex, living place; the first one built a weather station, the
second is working at a company - the information are not related.
The more details we consider in the similarity measure, the more precise it is. In-
creasing the common attributes in the maximal common subgraph decreases the
distance. An other example can be constructed where the graph distastance is larger
than the SSD-distance.

Conclusion
We have defined a new distance metric (SSDDM) for semi-structured data. A dis-
tance metric is widely used for data mining algorithms like clustering and classifica-
tion, but these subjects are less elaborated at the semi-structured domain. We have
examined the following application domains for the distance metric defined:
Plagisation detection for large, object-oritented programming languages is hard. A
student can copy homework and refactor it many ways, and for projects like J2EE,
it is almost impossible to detect these efforts. But these architectures have some
significant spots: service entry points, delegation patterns, which help us detect sim-
ilarities. The source code can be compiled to a syntax tree, and based on variable
and function references, it can be extended to a graph. After we have the program-
reference graph, the significant spots, the entry points and delegations can be ex-
tended with additional attributes, and variables can be marked with usage patterns.
The defined distance metric enables us to concentrate on structural similarities and
code execution paths instead of tree-refactoring methods.
Automatic language processing task (e.g. translation, information extraction) are
working with grammar-analized texts. The tree-building grammars are constrained,
and less effective for languages like Hungarian or Korean, cross-reference and on-
tology extensions are required. These structures extend the plain grammar tree to a
more detailed analysis of the text with attached attributes. Therefore the data struc-
ture can be considered as semi-structured data. Translation engines lack of learning
capabilities, because language patterns are not restrictive enough. The distance met-
ric function above can help to calculate similarities between sentences and segments,
and increase the precision of translations.
Other information extraction task is searching for similarities in an encyclopedia.
The most common, community-edited encyclopedia on the Internet is Wikipedia.
We have transformed the Hungarian Wikipedia articles to semi-structured graphs
based on the titles, links, positions of the text, and measured the distances of the
pages based on then-step depth level graph of the pages.
Scenarios with large problem-space (like the board game Go) can be reduced to a
less schema-aware, semi-structured graph. Extraction of rules (e.g. board evalua-
tion) can be simplified with the distance metric above, because the search for similar

problem configuration (e.g. board state) can be found in a less detailed environment.
The only limitation of the distance metric is the complexity of the maximal common
subgraph calculation.
The advantage of the metric is the simplicity of the calculation: after finding the
maximal common subgraph, the weight of the attached attributes can be calculated
in a straightforward way. Comparing to a standard graph-metric, attached attributes
are taken in account, in our novel approach more details are calculated for the dis-
tance, and the precision increases.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener, “The Lorel
query language for semistructured data,”International Journal on Digital Li-
braries, Vol. 1, No. 1, pp. 68–88, 1997

[2] H. Bunke and K. Shearer, “A graph distance metric based on the maximal
common subgraph,”Pattern Recognition Letters, Vol. 19, 1998

[3] S. Abiteboul, “Querying semi-structured data,” inICDT, pp. 1–18, 1997

[4] S. Abiteboul, P. Buneman, and D. Suciu,Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000

[5] S. Abiteboul and P. Kanellakis, “Object identity as a query language primi-
tive,” ACM SIGMOD, May 1989

[6] P. Buneman, M. F. Fernandez, and D. Suciu, “UnQL: a query language and
algebra for semistructured data based on structural recursion,”VLDB Journal:
Very Large Data Bases, Vol. 9, No. 1, pp. 76–110, 2000

[7] K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa, “Optimized sub-
structure discovery for semi-structured data,”PKDD02, 2002

[8] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”ICDM,
2002

[9] P. A. and M. Y.,Nearest Neighbor Search: A Database Perspective. Series in
Computer Science, 2005

[10] J. Ullman, “An algorithm for subgraph isomorphism,”Journal of the ACM,
1976

[11] R. Read and D. Corneil, “The graph isomorphism disease,”Journal of Graph
Theory, 1977

[12] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An improved algorithm
for matching large graphs,”3rd IAPR-TC15 Workshop on Graph-based Rep-
resentation, 2001

[13] H. Bunke, “On a relation between graph edit distance and maximum common
subgraph,”Pattern Recognition Letters, 1997

