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Abstract. The usefullness of fuzzy input fuzzy output functions and their 
interpolation/approximation by different operators in fuzzy control motivate their deeper 
theoretical study. We obtain some properties of bivariate fuzzy B-spline series such as 
variation and uncertainty diminishing property. We also discuss the use of such operators 
in digital terrain modelling. 

1 Introduction 

Fuzzy numbers can model linguistic expressions of the type "around", "early 
morning", "small", "big", etc. Due to the modelling ability of fuzzy numbers their 
study plays actually a central role in fuzzy sets theory (fuzzy mathematics). The 
usefulness of fuzzy arithmetic in Geography and Geology is shown recently in 
several works (see [2], [4]). Fuzzy-number-valued functions (in the present paper 
we call them fuzzy functions) are a natural way to model uncertain temporal or 
spatial dependency with respect to some crisp real variables. This remark suggests 
us their possible usefulness in Geographical and Geological applications where 
temporal or spatial dependency is subject of non-probabilistic uncertainty. In this 
paper we discuss bivariate fuzzy B-spline approximation and it's application in 
digital terrain modelling. 



In [16], L. Zadeh proposed the problem of interpolating some fuzzy data. This 
problem was solved in [13] and [9]. Also, recently in [5] the authors give error 
estimate in polynomial and trigonometric approximation, and the convergence of 
fuzzy Lagrange interpolation polynomial is studied. In [9] the notion of 
interpolating fuzzy spline is introduced. In [1] and [3], complete and natural 
splines interpolating fuzzy data are considered. For approximation of fuzzy-
number-valued functions these kinds of interpolating fuzzy splines are not very 
practical since their coefficients change sign at each knot, and it is difficult (or 
impossible) to prove approximation theorems (by lack of distributivity for 
operations with fuzzy numbers). Fuzzy B-spline series are introduced in [2] (there 
they are called fuzzy B-splines). Approximation properties of fuzzy B-spline 
series are not studied in [2], however their applications motivate an accurate study 
of them. Recently, in [11], having as starting point fuzzy interpolation, consistent 
fuzzy surfaces are constructed from fuzzy data. In [2] the bivariate fuzzy B-spline 
series are used in digital terrain modeling. We further investigate in the present 
paper bivariate fuzzy B-spline series, both from the theoretical and practical point 
of view. 

Fuzzy B-spline series are studied from the theoretical point of view in the recent 
paper [6]. Error bounds for approximation of a continuous fuzzy function by fuzzy 
B-spline series are obtained in terms of the modulus of continuity. Particularly 
simple error bounds are obtained for approximation by fuzzy B-spline series of 
Schoenberg type. 

After a preliminary section, we recall in Section 3 the fuzzy B-spline series and 
fuzzy splines of Schoenberg-type which are spline extensions of Bernstein 
polynomials and we remind some properties such as continuity, variation and 
uncertainty diminishing property. Section 4 is concerned with the approximation 
of a bivariate fuzzy function by some bivariate fuzzy B-spline series. Jackson-type 
estimates and particularly simple error bounds are obtained by using the modulus 
of continuity. Some conclusions and further research topics conclude the paper. 

2 Preliminaries 

Let FR  denote the space of fuzzy numbers. 

For 0 1α< ≤  and Fu∈R  let [ ] ( ){ };u x u xα α= ∈ ≥R  and 

[ ] ( ){ }0 ; 0u x u x= ∈ >R . Then it is well known that for each [ ]0,1α ∈ , 

[ ] [ , ]u u u
αα α=  is a bounded closed interval ( ,u u

αα  denote the endpoints of the 
α −  level set). For , Fu v∈R  and λ ∈R , we have the sum u v+  and the product 



uλ ⋅  defined by [ ] [ ] [ ]u v u vα α α+ = + , [ ] [ ]u uα αλ λ⋅ = , [ ]0,1α∀ ∈ , where 

[ ] [ ]u vα α+  means the usual addition of two intervals (as subsets of R ) and 

[ ]u αλ  means the usual product between a scalar and a subset of R . A fuzzy 

number Fu∈R  is said to be positive if 1 0,u ≥  strict positive if 1 0,u >  negative 

if 
1

0u ≤  and strict negative if 
1

0.u <  We say that u  and v  have the same sign if 
they are both positive or both negative. If u  is positive (negative) then 

( 1)u u− = − ⋅  is negative (positive). 

A special class of fuzzy numbers is the class of triangular fuzzy numbers. Given 
a b c≤ ≤ , , ,a b c∈R , the triangular fuzzy number ( , , )u a b c=  determined by 

, ,a b c  is given such that ( )u a b aα α= + −  and ( ) ,u c c b
α

α= − −  for all 

[0,1].α ∈  Then 0 ,u a=  
11u u b= =  and 

0
.u c=  

Define { }: 0F FD +× → ∪R R R  by 

( )
[ ]

{ }
0,1

, sup max , .D u v u v u v
α αα α

α∈
= − −  

The following properties are known: 

( ) ( ), ,D u w v w D u v⊕ ⊕ =  , , , Fu v w∀ ∈R  

( ) ( ), , ,  , ,  F FD k u k v k D u v u v k⋅ ⋅ = ∀ ∈ ∀ ∈R R ; 

and ( ),F DR  is a complete metric space. 

Also, the following properties are known. 

(i) If we denote { }00 χ=  then 0 F∈R  is neutral element with respect to + , i.e. 

0 0u u u+ = + = , for all Fu∈R . 

(ii) With respect to 0 , none of Fu∈ −R R  has opposite in FR  (with respect to 
+ ). 

(iii) For any ,a b∈R  with , 0a b ≥  or , 0a b ≤ , and any Fu∈R , we have 

( )  .a b u a u b u+ ⋅ = ⋅ + ⋅  For general ,a b∈R  , the above property does not hold. 

(iv) For any λ ∈R  and any , Fu v∈R , we have 

( )  .u v u vλ λ λ⋅ + = ⋅ + ⋅  



(v) For any ,λ μ ∈R  and any Fu∈R , we have 

( ) ( )  .u uλ μ λ μ⋅ ⋅ = ⋅ ⋅  

(vi) If we denote ( ), 0u D u=
F

, Fu∀ ∈R , then 
F

⋅  has the properties of an 

usual norm on FR , i.e. 0
F

u =  iff. 0u = , 
F F

u uλ λ⋅ = ⋅  and 

F F F
u v u v+ ≤ + , ( ) ,

F F
u v D u v− ≤ . 

The uniform distance between fuzzy-number-valued functions is defined by 

( , ) sup{ ( ( ), ( ) | [ , ]}D f g D f x g x x a b= ∈  

for , : [ , ] Ff g a b → R . 

For ( , )X d  any metric space and : Ff X → R  the function ( , ) :fω +⋅ →R R  

( , ) sup{ ( ( ), ( )) | , , ( , ) }f D f x f y x y X d x yω δ δ= ∈ ≤  

is called the modulus of continuity of the fuzzy function .f  

The fuzzy splines as introduced by O. Kaleva in [9], are given below. 

Definition 1   Let lS  be the family of all splines of order l  with the knots it , 
0,1,...,i n= . Then 0( ) ( )n

i i ifs x s x u== ⋅∑ , where i ls S∈  is the crisp spline 
interpolating the data ( , ),i jx f  0,1,..., ,j n=  where 1jf =  if i j=  and 0  
otherwise, and i Fu ∈R  are fuzzy constants is called a fuzzy spline. 

3 Fuzzy B-Spline Series 

Firstly, let us recall the definitions of the crisp B-splines. Let 0 1 .... rt t t≤ ≤ ≤  be 
points in R , with 0.rt t≠  The B-spline M  is given by 

1
0 0( ) ( ; ,..., ) [ ,..., ]( ) ,r

r rM x M x t t r t t x −
+= = ⋅−  

where 0[ ,..., ]rt t f  denotes the divided difference of f  (see e.g. [12]). 

The B-spline N  is defined by 

0 0 0
1( ; ,..., ) ( ) ( ; ,..., ).r r rN x t t t t M x t t
r

= −  

The fuzzy B-spline series are defined as follows (see [2]). 



Let [ , ]A a b=  or A = R . Let ( )iT t=  be a sequence of points in A  called basic 
knots satisfying 1i it t +≤  and ,i i rt t +<  for any it A∈ , 0,...,i n=  if [ , ]A a b=  and 
i∈Z  if A = R . If [ , ]A a b=  we need some auxiliary knots 1 0...rt t a− + ≤ ≤ =  and 

1 ... .n n rb t t+ += ≤ ≤  To a given sequence of knots corresponds a sequence of crisp 
B-splines ( ) ( ; ,..., ),j j j rN x N x t t +=  for ,j∈Λ  where Λ = Z  if A = R  and 

{ 1,..., }r nΛ = − +  if [ , ].A a b=  

Definition 2   A fuzzy B-spline series on A  ( A = R  or [ , ]A a b= ) having knots 
in ( ),iT t=  i∈Λ  is a function : FS A → R , of the form 

( ) ( ) ,j j
j

S x N x c
∈Λ

= ⋅∑  

where .j Fc ∈R  

First of all we recall some properties obtained in [6], such as continuity, the 
variation and uncertainty diminishing property of fuzzy B-spline series. Let us 
recall here two useful properties of crisp B-splines (see e.g. [11]). 

( ) 0 for [ , ] and ( ) 0 for [ , ]j j j r j j rN x x t t N x x t t+ +≥ ∈ = ∉  

The following identity holds 

( ) 1.j
j

N x
∈Λ

=∑  

Theorem 1   The fuzzy B-spline series ( )S x  given in Definition fBs is continuous 
as function of ,x  the knots it  and the coefficients .jc  

Next we recall the variation diminishing property. We say that a fuzzy-number-
valued function changes sign in 0 1[ , ]x x  if 0( )f x  is negative (positive) and 1( )f x  
is positive (negative). In digital terrain modeling this property can be interpreted 
as follows: The fuzzy B-spline approximation does not increase the spatial 
variability of the terrain (if interpolatory methods are used this can happen 
frequently). 

Theorem 2   A fuzzy B-spline series ( ) ( )j j jS x N x c∈Λ= ⋅∑  has the variation 
diminishing property, i.e. S  changes its sign at most as many times as the 
sequence ( )j jc ∈Λ  changes it's sign. 

The next property shows that fuzzy B-spline series can be useful in several 
application since they do not increase the uncertainty about the original data. For 
example, in digital terrain modeling this property shows us that the uncertainty on 
the altitude at each point is not overestimated, so the conservativism of the 
approximation is not excessive. 



We denote by ( )len u  the length of the support of the fuzzy number ,Fu∈R  . .i e  
0 0( ) .len u u u= −  

Theorem 3   A fuzzy B-spline series ( ) ( )j j jS x N x c∈Λ= ⋅∑  has the uncertainty 
diminishing property, i.e. the length of the support of ( )S x  does not exceed the 
maximum length of the support of the fuzzy numbers .jc  (the length of the 
support of a fuzzy number can be interpreted as the uncertainty on it). 

Remark 1   We observe that the splines defined by [kaleva] cannot be written as 
fuzzy B-spline series. Indeed, by Curry-Schoenberg theorem (see e.g. [11]), the 
crisp B-splines are a basis for the Schoenberg space of all splines. Let is  be the 
splines in Definition splold. Then 

( ) ( ) ,i j ij
j

s x N x d
∈Λ

= ∑  

with ijd ∈R . Let fs  be as in Definition splold. Then 

0 0

( ) ( ) ( ) ,
n n

i i j ij i
i i j

fs x s x u N x d u
= = ∈Λ

⎛ ⎞
= ⋅ = ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

where ,i Fu ∈R  0,..., .i n=  By the lack of the distributivity of the scalar 
multiplication with respect to the addition of fuzzy numbers, the two sums cannot 
be interchanged, because the splines is  (and so also the coefficients ijd ) change 
their sign at each knot. Changing the order of the sums is possible if all ijd  have 
the same sign for .j∈Λ  The same remark is true for fuzzy splines defined in [1] 
and [3]. 

Remark 2   Let us observe that the fuzzy B-spline series ( ) ( )j j jS x N x c∈Λ= ⋅∑  
can be easily computed by using fuzzy arithmetic (i.e. addition of fuzzy numbers 
and multiplication of a fuzzy number by a crisp real). 

Example 1   In what follows we give an example, and we compare our results 
with the examples in [1], [3] and [9]. In these examples we use triangular fuzzy 
numbers. 

We construct the cubic fuzzy B-spline series approximating the triangular fuzzy 
data 



2 2

1 1

0 0

1 1

2 2

3 3

1, ( ) ( 2,0,1),
1.1, ( ) (4,5,7),
1.2, ( ) (1,1, 4),
3, ( ) (0, 4,7),
3.5, ( ) ( 3,0, 2),
4, ( ) (0,1, 2),

f
f
f

f
f

f

ξ ξ
ξ ξ
ξ ξ
ξ ξ
ξ ξ
ξ ξ

− −

− −

= = −
= =
= =
= =
= = −
= =

 

with the knots 2 0.5,t− =  1 1.05,t− =  0 1.15,t =  1 1.25,t =  2 1.5,t =  3 2.75,t =  

4 3.25,t =  5 3.75,t =  6 4.25.t =  The endpoints of the 0−  level set and the 1−  
level set of the fuzzy B-spline series can be seen in Figure 1. 

 
Figure 1 

An example of a fuzzy B-spline 

It is easy to observe that the uncertainty (i.e. the length of the 0  -level set) is 
smaller compared with the examples in [1], [3] and [kaleva] interpolating the same 
data. 

4 Bivariate Fuzzy B-spline Series 

The fuzzy B-spline series in Definition fBs can be extended easily to the bivariate 
case. 



Definition 3   For a given rectangular grid of knots we consider 

1 2

1 2

, , .( , ) ( ) ( ) ,j r k r j k
j k

S x y N x N y c
∈Λ ∈Λ

= ⋅∑ ∑  

where 
1, ( )j rN x  is the crisp B-spline with respect to variable ,x  

2, ( )k rN y  is the 

crisp B-spline with respect to y  and .j kc  are fuzzy constants. Then ( , )S x y  is 
called bivariate fuzzy B-spline series or fuzzy B-spline surface (see also [2], [11]). 

The following remark shows us that the bivariate fuzzy B-spline series determine 
a so-called "consistent fuzzy surface" (see [11]). 

Remark 3   Since 

1 2

1 2

, , ,( , ) ( ) ( )j r k r j k
j k

S x y N x N y cα α

∈Λ ∈Λ

= ∑ ∑  

and 

1 2

1 2

, , ,( , ) ( ) ( )j r k r j k
j k

S x y N x N y c
α α

∈Λ ∈Λ

= ∑ ∑  

for any [0,1],α ∈  a fuzzy B-spline surface is a consistent fuzzy surface in the 
sense of [11], i.e. 

(1) if 1 2α α≤  

2 11 2( , ) ( , ) ( , ) ( , ) ,S x y S x y S x y S x y
α αα α≤ ≤ ≤  

i.e. surfaces with larger α  -cut values are contained in surfaces with lower α  -
cut values, and 

(2) ( , )S x y α  and ( , )S x y
α

 are crisp B-spline series, so they posses the underlying 

smoothness and continuity properties of the approximation method which is used. 

We approximate a continuous bivariate fuzzy-number-valued function 
: [0,1] [0,1] Ff × → R  by some fuzzy B-spline series : [0,1] [0,1] FS × → R . For 

this aim we consider the sequences of knots 10 .... 1,nt t< ≤ ≤ <  auxiliary knots 

1 1 0.... 0,rt t− + ≤ ≤ =  
111 ....n n rt t+ += ≤ ≤  on and knots 10 .... 1mt t′ ′< ≤ ≤ <  and 

auxiliary knots 
2 1 0.... 0,rt t′ ′

− + ≤ ≤ =  
211 .... .m m rt t ′′

+ += ≤ ≤  Let 
1, ( )j rN x  denote the 

crisp B-splines with respect to the variable x  having knot sequence ,jt  

1 1,...,j r n= − +  and 
2, ( )k rN y  the crisp B-spline series with respect to variable y  

and knot sequence ,kt
′  2 1,..., .k r m= − +  Let 

1 2, ,( , ) ([0,1] [0,1]) (supp supp )j k j r k rN Nξ η ∈ × ∩ ×  (where 



,supp { [0,1] : ( ) 0}).j r jrN x N x= ∈ ≠  

Definition 4   The bivariate fuzzy B-spline series approximating a target function 
f  are 

1 2

1 2

, ,
1 1

( , , ) ( ) ( ) ( , ).
n m

j r k r j k
j r k r

S f x y N x N y f ξ η
=− + =− +

= ⋅∑ ∑  

We observe that everything is also valid for : [ , ] [ , ] .Ff a b c d× → R  

Approximation properties of bivariate fuzzy B-spline series are given in the 
following theorem. 

Theorem 4   For : [0,1] [0,1] Ff × → R  continuous we have: 

1 2 1 2( ( , ), ( , , )) ( , , ),D f x y S f x y r r fω δ δ≤ ⋅ ⋅  

where 1 0 1max ( )j n j jt tδ ≤ ≤ += −  and 2 0 1max ( )k m j jt tδ ′ ′
≤ ≤ += −  and 1 2( , , )fω δ δ  is the 

bivariate modulus of continuity of the function f  defined by 

1 2 1
1 2 2

1 2 1 1 2 2( , , ) sup ( ( , ), ( , )).
x x
y y

f D f x y f x y
δ
δ

ω δ δ
− ≤
− ≤

=  

Proof. By (N1) and (N2), the results in [6] are easily extended to the bivariate 
case. 

Better estimates can be obtained for fuzzy splines of Schoenberg type (for crisp 
Schoenberg splines see e.g. [15], [14]). Let the knots and auxiliary knots given as 
above, and 1 11

1

...
1 ,j j rt t

j rξ + + −+ +

−=   1 1,..., ,j r n= − +   1 12

2

...
1 ,k k rt t

k rη
′ ′
+ + −+ +

−=   2 1,..., .k r m= − +  

We define the bivariate fuzzy spline of Schoenberg type 

1 2

1 2

, ,
1 1

( , , ) ( ) ( ) ( , )
n m

j r k r j k
j r k r

S f x y N x N y f ξ η
=− + =− +

= ⋅∑ ∑ . 

Remark 4   If there are no basic knots in the interior of the interval [0,1]  then the 
bivariate fuzzy Schoenberg spline reduces to the bivariate fuzzy Bernstein 
polynomial similar to the crisp case, so the results of this paper extend the results 
in [8] and [10]. 

As in [14] we obtain the error bound in approximation by fuzzy splines of 
Schoenberg type: 

Theorem 5   Concerning the error in approximation by fuzzy Schoenberg splines 
we have 

1 1 2 2 1 2( ( , , ), ( , )) (1 ( , ))(1 ( , )) ( , , ),D S f x y f x y h r h r fδ δ ω δ δ≤ + +  



where ( , )h r δ  is 

1( , ) min , .
122 2
rh r

r
δ δ

⎧ ⎫⎪ ⎪= ⎨ ⎬
−⎪ ⎪⎩ ⎭

 

Proof. The proof is similar to the unidimensional case (see [6]). 

This result can be seen as an error estimate for the digital terrain modelling 
method described in [2]. 

In what follows we discuss the usefulness of the method in digital terrain 
modelling. Uncertainty in digital terrain modelling is mainly due to measurement 
errors. These types of errors can be treated as probabilistic uncertainties, however, 
in the present case, repeating measurements in order to use statistical methods is 
maybe expensive and the model need not be very accurate. 

Possibilistic (non-statistical) uncertainty may be introduced in the modeled system 
if we want to use our present model of the same terrain in the future. Even in near 
future, the model may change due to several reasons, such as erosion or some 
human factor. It is easy to remark that the effect of these changes may not be 
neglected in many cases and new measurements after relatively small changes are 
unnecessary and too expensive. Another possible treatment of this problem would 
be modelling of the future evolution of the system, which would imply a much 
more complex modelling problem, maybe too expensive from the computational 
point of view. 

Conclusions 

Approximation of bivariate fuzzy functions by bivariate fuzzy B-spline series have 
been studied and error estimates are obtained in terms of the modulus of 
continuity. 

Since fuzzy B-spline series are already studied from a practical point of view for 
digital terrain modelling (see [2], [11]) their study from a theoretical point of view 
is motivated. 
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