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Abstract: In this paper a simplified ARMAX-type (Autoregressive Moving Average model 
with eXternal input) adaptive control of a polymerization process approximately in its 
quasi-stationary limit is presented. This process serves as an appropriate paradigm of 
multivariable dynamic systems of strong non-linear coupling in the control of which the 
state propagation of various internal degrees of freedom cannot be directly controlled: the 
desired output is nonlinear function of these quantities. In the present example only a single 
input variable is used for control purposes. In the paper detailed mathematical analysis of 
a quantitative model of the process is presented. It is concluded that at the time-scale 
commonly used in industrial control of such reactions (about 0.1-0.2 s sampling time) 
following the variation of the process input (control signal) the internal dynamics of the 
system achieves its stable stationary state with a rough approximation, therefore in the 
applied ARMAX-type control instead of the internal dynamics of the system the “dynamics” 
of the desired output is revealed, i.e. the controlled process is more or less similar to the 
concept of the “quasi-stationary processes” of Classical Thermodynamics. This fact sets 
certain limit to the available precision of the control if the desired control actions are 
faster than the characteristic variation of the internal dynamics. Improving this control 
requires far more detailed analysis and modelling of the process, and does not allow 
neglecting the dynamics of the internal degrees of freedom. 

1 Introduction 

An important class of physical systems’ control is the set of dynamic processes in 
which some deterministic response to an external input is expected. This is 
typically relevant, for instance, in the realm of chemical processes that correspond 



to the state propagation of a multivariable system in which only certain degrees of 
freedom are directly observed and controlled, while the other ones behave 
according to the internal dynamics of the system. A discrete time model can be 
formulated in the form of a difference equation with an external input {uk} that 
usually is known quantity (Autoregressive Moving Average Model with eXternal 
input - ARMAX) [1]: 
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For instance, in the so-called Takagi-Sugeno fuzzy models the consequent parts 
are expressed by analytical expressions similar to (1) and they use some linear 
combinations of the (1)-type rules in which the coefficients depend on the 
antecedents. With the help of such Takagi-Sugeno fuzzy IF-THEN rules sufficient 
conditions to check the stability of fuzzy control systems are now available e.g. 
[2]. As alternative control approaches Neural Networks can be mentioned that in 
general are useful means of developing nonlinear models. A particular case of 
such applications is when the model itself consists of certain nonlinear mapping, 
for instance in the linearization of the nonlinear characteristics of various sensors 
[3]. Neuro-fuzzy systems provide the fuzzy systems with the possibility of 
automatic tuning by using Neural Network (NN) as a tool. The Adaptive Neuro-
Fuzzy Inference System (ANFIS) is a cross between an artificial neural network 
and a Fuzzy Inference System (FIS) [2, 4, 5, 6]. The adaptive network can be a 
multi-layer feed-forward network in which each node (neuron) performs a 
particular function on incoming signals. Radial Basis Function Networks (RBFNs) 
provide an attractive alternative to the standard Feedforward Networks using 
backpropagation learning technique [7]. The linear weights associated with the 
output layer can be treated separately from the hidden layer neurons. In fact the 
nodes of a RBFN represent “fuzzified” or “blurred” regions which correspond to 
the well defined antecedent sets of a fuzzy controller. In many cases development 
of the whole model is a complicated task especially when the “antecedent” part is 
strongly nonlinear multivariable function of the input. Evolutionary methods as 
e.g. the Particle Swarm Optimization that realizes stochastic random search in a 
multi-dimensional optimization space [8, 9] may be combined with them. In the 
case of certain problem classes similarity relations can also be observed and 
utilized to simplify the design process [10]. 

A significant common feature of the above approaches is that they try to develop a 
“complete” soft computing based model of the system to be controlled. This 
naturally makes the question arise whether it is always reasonable to try to identify 
a “complete” model. As a plausible alternative simple adaptive controllers can be 
imagined that do not wish to create a complete model. Instead of that on the basis 
of slowly fading recent information a more or less temporal model can be 
constructed and updated step by step by the use of simple updating rules 
consisting of finite algebraic steps of lucid geometric interpretation. In the past 



few years at the Budapest Tech two variants of this simple approach were 
elaborated and extensively investigated via simulation results. One of them is 
based on the modification of the renormalization transformation extensively used 
in various fields of physics (e.g. [11]), the other one is based on a lucid geometric 
interpretation of the ARMAX-type approaches using floating system of basis 
vectors for describing the controlled system [12]. Though the convergence of the 
method in [11] can be guaranteed for a quite wide class of physical systems (e.g. 
for Classical Mechanical Systems), the latter one in [12] does not need so rigorous 
conditions, therefore in the sequel this one will be applied for the control of the 
chemical reaction considered as a paradigm. 

2 Geometric Approach for Dynamic Systems 

Consider a simple nonlinear causal Multiple Input – Multiple Output (MIMO) 
system described by the equation: 
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in which f(t) represents the external driving forces to be utilized for control 
purposes. Let us suppose that the time-derivatives can be approximated by certain 
finite element approach using time-resolution δt. To numerically estimate the nth 
order time-derivatives at least (n+1) discrete values has to be taken into account 
via considering their linear combination as 
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in which the cs coefficients depend on δt and can be chosen in various manners. 
We also note that the number of the coefficients may be somewhat greater that 
(n+1), e.g. in the case of computing the central first derivatives we may use 3 
points, too. Via rearranging (2) and using (3) the following ambiguous 
representation can be obtained: 

( ) ( ) ( ) ( ) ( )( )tttntttttt δδδδ −−−−≅ fyyyΦy ,,...,2,  (4) 

in which the actually used values are concentrated in the vicinity of the values of 
time t. Supposing that the array of the values Yf:=[y(t-δt),…, y(t-nδt), f(t-δt)]T≠0 
in (4) can be replaced by a scalar product in ambiguous manner by an array G as 

( ) ( ) ( )ttt f
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in which both the angle between g and y and the absolute value of g are not well 
defined. If the nth derivative of y(t) is directly measurable similar ambiguous 
approximation can be constructed for y(n)(t) as 
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Let us suppose that on the basis of some rough initial or preliminary model we can 
compute the appropriate control action f(t) and can store the y(t) values, too. It is 
evident that in the case of a time-invariant linear system g does not depend on t, 
therefore collecting sufficient information coded in the form of (6) leads to the 
system of linear equations that belong to the constant array g as 
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Equation (7) has very simple and lucid geometric interpretation: the constant 
vector g is represented by time-varying or “floating” system of basis vectors  
Yf(t-nδt) (n=1,…,M). If this set is linearly independent g can be reproduced as the 
linear combination of these vectors as 
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In (8) it is naturally supposed that to a constant g for a floating system of basis 
vectors a floating or time-varying system of the μs(t) coefficients belongs in a 
special manner that they together can provide a constant vector. Let us suppose 
that we have two vectors a and b having known dot product with g. The 
component of b in the orthogonal subspace of a can be expressed in the form of 
b⊥=b+λa:  

aa
baaababa T

T
TTT −

=⇒+== ⊥ λλ0 . (9) 

Due to the linear property of the dot or “scalar” product the dot product of b⊥ with 
g can also be computed as 

agbgbg TTT λ+=⊥ . (10) 

Now let us apply the following algorithm that is similar to the Gram-Schmidt 
orthogonalization with the exception of normalizing the vectors: remove the 
components in the direction of Yf(t-δt) from Yf(t-2δt) ,…, Yf(t-Mδt) with the 
method given in (9). Then the new set indexed with 2, 3,…, M-1 will be in the 
orthogonal subspace of Yf(t-δt). Then take the 2nd vector of the remaining set and 
subtract the components of the remaining ones in its direction, etc. while tracing 
the variation of the dot products according to (10). (To avoid numerical 
difficulties the components in the direction of very small vectors need no to be 
subtracted.) Since in the case of linear systems it is just enough to obtain sufficient 
information on the independent directions only, the approximately same direction 
of vectors a and b can be stated if 
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in which ε1 and ε2 are small positive numbers. Otherwise these vectors have 
essentially different directions. Via continuing the systematic observation further 
information can be obtained on g in the form of (6) as 

( ) ( ) ( )ttttt f
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Together with the information coded in (7) (12) is redundant but free of 
contradiction if g is exactly constant. In this case either (12) or one of the vectors 
in (7) can be dropped, replaced with the 1st vector in the set in (7), and the 
orthogonalization algorithm can be repeated. As a result the same constant g must 
be obtained by the use of this new set of basis vectors. If our system is linear but 
not time-invariant (7) and (12) are rather controversial than redundant because 
these vectors do not belong exactly to the same g since they were obtained in 
different time instances. A plausible means of contradiction resolution may be 
finding the vector in the closest direction of the last one in the sense of (11) since 
the remaining vectors convey less relevant information on the system’s behavior 
in this direction. This vector can be replaced by the new information conveyed by 
(12). Then by executing the orthogonalization algorithm on the remaining set the 
“obsolete information regarding the new direction” can be removed and replaced 
by the fresh one. If our system is neither time-invariant nor linear then not only the 
directions but the absolute values of the vectors also influence its behavior. In this 
case the old vector closest to the new one in the sense of a norm can be dropped 
and replaced by the new one because the information mainly conveyed by it is 
“refreshed”. 

In the possession of some prescribed control strategy formulating the desired 
trajectory tracking with asymptotic convergence continuous tracking error is 
expected and the array g in (8) can be used for calculating the necessary control 
action instead of the rough initial model as 
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in which the quadratic matrix gM corresponds to those part of g in which the 
coefficients of f(t) are placed. In the special case of SISO or in the control of 
MIMO systems in which only one control signal is used and only one output is 
directly observed (13) is reduced to 
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in which the singularity avoidance can be solved in the following simple manner: 
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with a small positive positive number ε3. 

3 The Model of the Polymerization Process 

The chemical reaction considered is the free-radical polymerization of methyl-
metachrylate with azobis(isobutyro-nitrile) as an initiator and toluene as a solvent 
taking place in a jacketed Continuous Stirred Tank Reactor (CSTR). The 
mathematical model of this process was taken from [13]. In his Doctoral Thesis J. 
Madár applied a sophisticated approach based on Genetic Programming (GP) for 
identifying this reaction [14]. The aim of the present paper is to investigate a more 
simple temporal identification approach for this system. According to [13] the 
model considered is: 
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in which the state variables x1, …, x4 denote dimensionless concentrations of 
various chemical components taking part in the reaction. For our purposes the 
really interesting variables are x1 i.e. the monomer concentration, and the output of 
the system, that is the number-average molecular weight denoted by y. The 
process input, that is the control signal, u is the dimensionless volumetric flow rate 
of the initiator. The constants in (16) have the following numerical values: A=10, 
B=6, C=2.4568, D=80, E=10.1022, F=0.024121, G=0.112191, H=10, I=245.978, 
and J=10. It is worth noting that though certain negative values for u may have 
physical meaning (i.e. a kind of subtraction of the initiator from the system), its 
practically realizable values are positive numbers or zero. It is easy to see that for 
a constant process input u (16) yields a stationary solution in which the time-
derivatives of the state variables are equal to zero: 
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in which the sequence of the quantities corresponds to the easiest way of the 
calculation. Due to the positive nature of u and the constants in (17) it is evident 
that the stationary solutions are positive numbers. The stability of the stationary 
solution can be proved via the perturbation calculus as follows: an infinitesimally 
small variation in the process input δu is supposed, and the time-dependent terms 
are considered as small perturbations on the constant stationary states as  
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Via replacing (18) into (16) and keeping only the 0th and the 1st order terms in the 
perturbations the first order system of differential equations of constant 
coefficients can be obtained: 
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In the special case in which δu=0 and the δxi(0)≠0 initial perturbations are finite 
values (19) corresponds to exponentially damped perturbations if the eigenvalues 
of the big matrix in it are negative numbers. In Fig. 1 the stationary output is 
described versus the process control, as well as the eigenvalues of the matrix in 
(19) in an investigated case. The stationary solutions evidently were stable in the 
cases numerically investigated. The δu≠0 constant case with δxi=0 initial errors 
corresponds to an infinitesimal constant modification in the process input to which 
evidently finite (infinitesimally small) δxi≠0 state modifications belong (the 
concept of the “quasi-stationary process” in Classical Thermodynamics). Really, if 
the variation of u is far slower than that of the internal dynamics of the system the 
modification of the state-variables are properly mapped to the variation of u 



according to Fig. 1 when the transients are completely damped. In the sequel the 
adaptive control of this system is investigated. 

 
Figure 1 

The stationary process output vs. the constant process input (left side), and the eigenvalues of the 
matrix in (19) in the range investigated (right side) 

4 Simulation Results 

In the forthcoming simulation examples δt=0.04 s and 0.1 s sampling times were 
supposed for the controller, while the numerical integration of the transients 
happened with δtint=0.0001 s step length. For the process output the following 
“kinematic” restriction was prescribed: 

( )yyPyy NomNomDes −+= . (20) 

 
Figure 2 

The nominal and the simulated stationary process output vs. time [s] for the δt=0.04 s (left side), and 
the δt=0.10 s (right side) sampling times in the case of an “almost quasi-stationary” motion 

In Fig. 2 the tracking properties of the controller are given for “quasi-stationary” 
cases. It is obvious that the δt=0.04 s sampling time is not enough for tracking the 
consequences of the transients, and increasing it to δt=0.10 s improves the 



tracking precision. For substantiating the plausible supposition that in the case of a 
quasi-stationary motion the ARMAX-type controller “identifies” rather the 
properties of the nominal motion than that of the dynamics of the system under 
control in Fig. 3 the 1st three identified components of the vector g in (8) are 
described in both cases. 

 

 

 
Figure 3 

The variation of the 1st three identified components of g vs. time [s] for the δt=0.04 s (left side), and 
the δt=0.10 s (right side) sampling time in the case of the “almost quasi-stationary” motion 

The identified components of g in Fig. 3 virtually vary almost precisely according 
to the frequency of the “nominal motion” as given in Fig. 2. A vector g of four 
components roughly corresponds to a three points based finite elements 
approximation of the velocity and a single excitation point based approach (like in 
the case of an inhomogeneous differential equation). Consequently the value of 



the sampling time concerns the absolute values in g. Fig. 4 reveals similar periodic 
behaviour in the 4th component of g pertaining to the “excitation” or “process 
control” signal u(t). 

 
Figure 4 

The variation of the 4th identified component of g vs. time [s] for the δt=0.04 s (left side), and the 
δt=0.10 s (right side) sampling time in the case of the “almost quasi-stationary” motion 

It is worth noting in the case of the different sampling times the nominal motion 
had the same frequency, and the simulations were carried out for 500 steps. Due to 
the proportional error-compensating term in (20) further increase in the sampling 
time at the same nominal frequency leads to too big discrete jump in the feedback 
that may result in loosing the control’s stability. 

Conclusions 

In this paper a special, simplified ARMAX-type adaptive control was applied for 
controlling a polymerization process. This process served as an appropriate 
paradigm of multivariable dynamic systems of strong non-linear coupling between 
different internal dynamic degrees of freedom. In the example these quantities 
were not directly controlled: the desired output was nonlinear function of these 
quantities, and only a single input variable was used for control purposes. On the 
basis of a detailed mathematical analysis of a quantitative model of the process it 
was concluded that at the time-scale commonly used in industrial control of such 
reactions (about 0.1-0.2 s sampling time) the internal dynamics of the system 
achieves its stable stationary states between two control actions with a rough 
approximation, therefore in the applied ARMAX-type control instead of the 
internal dynamics of the system rather the “dynamics” of the desired output was 
revealed. This meant that the controlled process was more or less similar to the 
concept of the “quasi-stationary processes” of Classical Thermodynamics. This 
fact in general sets certain limit to the available precision of the control if the 
desired control actions are faster than the characteristic variation of the internal 
dynamics of the system. Improving this control requires far more detailed analysis 
and modelling of the process, and does not allow neglecting the dynamics of the 
internal degrees of freedom. 
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