
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 117 ░

A New Formalism Technique for OCL

Gergely Mezei, Tihamér Levendovszky, Hassan Charaf
Department of Automation and Applied Informatics, Budapest University of
Technology and Economics
Goldmann György tér 3, H-1111 Budapest, Hungary
{gmezei, tihamer, hassan}@aut.bme.hu

Abstract: Modeling, especially domain-specific modeling has growing importance in many
fields of software enginering, such as modeling control flows of data processing for
example in man-machine systems. Customizable language dictionary and customizable
notations of the model elements offered by domain-specific technologies makes software
systems easier to create and maintain. Visual model definitions have a tendency to be
incomplete, or imprecise, thus, the definitions are often extended by textual constraints
attached to the model items. Textual constraints can also eliminate the incompleteness
stemming from the limitations of the visual definitions. Object Constraint Language (OCL)
is one of the most popular constraint languages in the field of Domain Specific Modeling
Languages. OCL is a flexible, yet formal language with mathematical background. OCL
has been formalized using set theory. Our research focuses on creating an OCL
optimization solution, but the existing formalism is hard to use in the field of dynamic,
constraint manipulating algorithms. The paper presents OCLASM, a new formalism for
OCL based on the Abstract State Machines technique.

Keywords: Domain-specific modeling, OCL, constraints, Abstract State Machines

1 Introduction and Motivation

Domain Specific Modeling Languages (DSMLs) allow creating visual models
using a high level of abstraction, the customization of model rules and notation.
Visual models created by DSMLs makes easier to understand and handle the
problems that made them very popular in almost every field of software
engineering including, but not limited to general software modeling, feature
modeling, resource editing or control flow modeling.

Although visual language definitions have many advantages, they have the
tendency to create imprecise, incomplete, and sometimes even inconsistent
definitions. For example, assume a domain describing the cooperation between
computer networks and humans in a man-machine system. A computer can have
input and output connections in the network, but these connections use the same

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 118

cable with maximum n channels. Thus, the number of the maximum available
output connections equals the total number of channels minus the current number
of input channels. It is hard, or even impossible to express this relation in a visual
way. The solution to the problem is to extend the visual definitions by textual
constraints. There exist several textual constraint languages, the Object Constraint
Language (OCL) is possible the most popular among them. OCL was originally
developed to create precise UML diagrams [1] only, but the flexibility of the
language made possible to reuse OCL in language engineering, such as in
metamodeling [2]. Nowadays, OCL is one of the most wide-spread approaches in
the field of metamodeling and model transformations. The textual constraint
definitions of OCL are unambiguous and still easy to use.

Nowadays, domain-specific modeling tools usually have support for OCL either
by interpreters, or by compilers. Interpreters are easier to implement, but they are
not as flexible and efficient as compilers. Thus, the key of efficient constraint
handling is to use optimizing OCL compilers. None of the existing tools support
optimization. Our research focuses on creating a complete, system-independent
optimizing constraint compiler. We have created three optimizing algorithms
(presented in [3] and in [4]) that can accelerate the validation process by
relocating, decomposing the constraint expressions and by caching the model
queries. The algorithms can accelerate the validation by 10-12% according to our
measurements. Besides the pseudo code of the algorithms, preliminary proofs of
correctness were also presented in the mentioned papers. However when
implementing the algorithms, we have found that the proofs are not precise
enough, formal proofs are required.

OCL has a mathematical definition based on set theory with a notion of object
model and system states. Although this formalism ensures that OCL constraints
are unambiguous, it does not cover dynamic behavior of the constraints. Set theory
is a highly flexible formalism technique that could be extended to support
dynamic behavior. Another way to formalize the optimization algorithms are the
Abstract State Machines (ASMs), formerly known as evolving algebras. ASMs
were introduced by Gurevich [5]. ASM is working on abstract data structures,
which comes with a simple mathematical foundation. The notation of ASM is
based on the mathematically precise notion of a virtual machine execution, states
and state transitions. This notation is familiar both from programming practice and
mathematical standards. ASM provides a concise way to define system semantics
and dynamic behavior. ASMs are very popular in the domain of formal
specification. The ASM formalism has several advantages in contrast with the
original formalism in this field. Firstly, the notation of ASM is easier to use for
proving the correctness of algorithms given by pseudo code. Secondly,
modularization and stepwise refinement is easier to accomplish in ASM. This also
means that the formalism specification of the dynamic behavior can be
hierarchically decomposed. Set theory is a flexible technique, but it uses a low-
level description of the problem space, thus, the description the dynamic behavior

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 119 ░

would produce a considerably huge rule set. In case of ASM this problem does not
occur, because ASM allows to choose the level of abstraction used in the
formalism. Therefore, the formalism in ASM can be more concise.

This paper presents OCLASM, the ASM formalism of the OCL language. Our aim
is to use this formalism to prove the correctness of the optimization algorithms.
The paper also contains the formalism of one of the optimization algorithms, the
RelocateConstraint algorithm to show how the formalism can be used in practice.
The paper is organized as follows: Section 2 elaborates the most important
projects in the field of OCL formalism and Abstract State Machines. Section 3
presents the basics of Abstract State Machines. Section 4 introduces the new
formalism technique including the construction of the formalism and several basic
examples. Finally, Section 5 summarizes the presented work.

2 Related Work

Abstract State Machines were used in many projects as a mathematical formalism.
This section introduces only a few of these projects, more precisely, the projects in
connection with OCL or modeling, and projects from where our method has
borrowed some basic ideas. Some of the mathematical model formalisms not
based on ASM are also presented.

The book [6] presents a precise approach, which facilitates the analysis and
validation of UML models and OCL constraints. It defines a formal syntax and
semantics of OCL types, operations, expressions, invariants, and pre-
postconditions, and it discusses some of the main problems with the original OCL
specification. Although the book does not use ASM for formalism, it gives a
precise overview about the topic.

The OCL formalism available in set theory is examined in [7]. The paper collect
the elements appearing in OCL standard, but not in the formalism. It presents an
extension of the original formalism to solve these problems.

In [8] an ASM definition for dynamic OCL semantics is presented. This
formalism focuses on the states of the modeling environment and handles the
invariants as atomic units implemented in outer functions. This means that the
formalism handles the effects and the result of the validation, but it does not give
ASM definition for the OCL statements, such as forall, thus, it is not capable
of describing algorithms operating with statements.

ASM definition for Java and Java Virtual Machine (JVM) is elaborated in [9].
This ASM formalism offers an implementation-independent description of the
language and the execution environment. Using this abstract description, several
properties of Java and JVM have been proved. The book contains several

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 120

straightforward solutions. Our approach has borrowed the basic idea of
formalization, namely handling the code as an annotated syntax tree from here.

3 Backgrounds

3.1 Basic ASMs

In [5], ASMs are introduced as follows. ASMs are finite sets of transition rules of
the form

if (condition) then Updates

which transform abstract states. Where Condition (referred to as guard) under
which a rule is applied is an arbitrary predicate logic formula without free
variables. The formula of Condition evaluates to true or false. Updates is a infinite
set of assignments in the form of f(t1..tn) := t whose execution is
understood as changing (or defining, if it has been not defined before) the value of
the occurring function f at the given arguments.

The notion of ASM states is the classical notion of mathematical structures where
data come as abstract objects, i.e., as elements of sets (domains, universes, one for
each category of data) which are equipped with basic operations (partial functions)
and predicates (attributes or relations). The notion of ASM run is the classical
notion of computation in transition systems. An ASM computation step in a given
state consists of executing simultaneously all updates of all transition rules whose
guard is true in the state if these updates are consistent. A set of updates is called
consistent if it contains no pair of updates with the same location.

Simultaneous execution provides of an ASM rule R for each x satisfying a given
condition ϕ:

forall x with ϕ R,

where ϕ is a Boolean-valued expression and R is a rule. We freely use
abbreviations, such as where, let, if then else, case and similar standard notations
which are easily reducible to the above basic definitions.

A priori no restriction is imposed neither on the abstraction level or on the
complexity or on the means of the function definitions used to compute the
arguments and the new value denoted by ti, t in function updates. The major
distinction made in this connection for a given ASM M is that between static
functions which never change during any run of M and dynamic ones which
typically do change as a consequence of updates by M or by the environment. The
dynamic functions are further divided into four subclasses. Controlled functions

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 121 ░

are dynamic functions which can directly be updated by and only by the rules of
M. Monitored functions are dynamic functions which can directly be updated by
and only by the environment. Interaction or shared functions are dynamic
functions which can directly updated by rules of M and by the environment.
Derived functions are dynamic functions which cannot be directly updated either
by M or by the environment, but are nevertheless dynamic because they are
defined in terms of static and dynamic functions.

3.2 The Mathematical Definition of ASM

In an ASM state, data is available as abstract elements of domains which are
equipped with basic operations represented by functions. Relations are treated as
Boolean-valued functions and view domains as characteristic functions, defined
on the superuniverse which represents the union of all domains. Thus, the states of
ASMs are algebraic structures, also called algebras.

Definition 1 A vocabulary (also called signature) Σ is a finite collection of
function names. Each function name has an arity, which is a non-negative integer
representing the number of arguments the function takes. Function names can be
static or dynamic. Nullary function names are often called constants; but the
interpretation of dynamic nullary functions can change from one state to the next.
Every ASM vocabulary is assumed to contain the static constants undef, True and
False.

Definition 2 A state of the vocabulary Σ is a non-empty set X, together with
the interpretation of the function names of Σ, where X means the superuniverse of

. If f is an n-ary function name of Σ, then its interpretation
f is a function from Xn into X; if c is a constant of Σ, then its interpretation
c is an element of X. The superuniverse X of the state is denoted by | |.

The elements of the state are the elements of the superuniverse of the state and
according to the definition the parameters of the functions are also elements of the
superuniverse.

Definition 3 An abstract state machine M consists of a vocabulary Σ, an initial
state for Σ, a rule definition for each rule name, and a distinguished rule name
called the main rule name of the machine.

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 122

4 The Formalization Method

4.1 The Basics

In OCLASM, ASM is used to describe the execution of constraints. Thus, the
approach observes the execution. The rules of ASM are static, namely they do not
depend on the constraint, which makes easier to prove the equivalence of two
algorithms or constraints.

States of OCLASM describe the execution of constraint expressions, where state
represents the state of the constraint execution at a certain point of time. For
example a state describes which expression is under evaluation. The rules of
OCLASM are used to navigate between the states when running the validation.
This approach is similar to the method published in [9] in several aspects. The
constraint expression is handled as the sequence of programming statements and
expressions. The execution of the constraint is a step-by-step execution of these
programming units. At each position, the corresponding expression or statement is
evaluated or executed, and then the control flow proceeds to the next
programming unit. This method is similar to traversing the annotated abstract
syntax tree of the constraint.

The states of OCLASM contains the programming units (statements or
expressions, referred to as Phrases) of the constraint, and the current position of
the execution. It is important that the states do not contain any particular
information about the underlying model (the model to validate), since (i) OCL
cannot change the underlaying model by the definition of OCL [1], and (ii) the
validation must be platform independent. Thus, to access the model items, external
functions are used as described later.

The superuniverse of OCLASM consists of (i) the universe of Phrases, and (ii) the
universe of possible positions in the source code. The first universe describes the
type of Phrases, namely the basic syntactic constructs available in OCL. This
universe contains for example the definition of OclExpression

Exp := Property | Variable | Literal | Let | OclMsg |
if (Exp) Exp else Exp

or the definition of boolean operations Exp Bop Exp. The second universe,
called Pos represents the valid positions of the execution in the given constraint.

4.2 The Functions of OCLASM

Recall that constraint handling must be platform-independent. The model items
are identified by a unique ID (a literal expression), but the model representation is

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 123 ░

platform independent. This requirement can be easily accomplished, if there is an
ModelInterface to handle every model-based operation [2]. This way, the
database-related implementation can be hidden. In case of OCLASM this means
that accessing the model items is handled in external (monitored) functions:

• meta(id): Obtains the meta ID of the model item identified by id.

• navMultiplicity(id, dest) : Obtains the multiplicity of the
edge from the model item identified by id and the destination, whose
navigation name is dest.

• navigateTo(id, dest) : Obtains the elements of the edge from
the model item identified by id and the destination, whose navigation
name is dest. The result is a Set of model IDs.

• getAttribute(id, name) : Obtains the value of the attribute
name of the model item identified by id.

The execution of a constraint is handled by dynamic functions based on the
superuniverse of OCLASM. The dynamic function RestBody contains (i) part of
the current constraint still to be executed and (ii) the results and values already
computed and still needed. At the beginning of the execution Restbody contains
the representation of the constraint itself. The values in RestBody are Phrases.
Another dynamic function, called pos represents the current position of the
execution, pointing to the current expression or statement to be executed. The
values of pos are elements of the universe Pos. The expression RestBody/pos
denotes the currently to be computed subterm of RestBody at pos. It will
eventually be replaced by the computed value of the subexpression.

To navigate between subexpressions during the execution of the constraint we
define the functions Child and Top. Each expression containing subexpressions
(children) can use the function Child to reach these subexpressions. The function
has two parameters: the position of the expression and the ordinal number of the
subexpression. The function returns with the position of the subexpression. The
function Top represents the inverse operation: if the execution of a subexpression
is terminated, then the Top function is used to retrieve the position of the parent
expression.

The dynamic function Type is used to handle the type of the different expressions
uniformly. It has one input parameter, the position of the expression. The return
value of the function can be one of the basic types defined in OCL, such as real,
integer, or collections. Collections are handled as special types, because here the
name of the type does not really define the type. For example OrderedSet does
not hold any information about the contained model items, thus,
OrderedSet('a','b')->first() + 3 cannot be identified as an invalid
expression. To solve this problem, the type of the collection contains an additional
information as follows: Collection(ItemType). Note, that the expression is

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 124

recursive (ItemType is also a type), but it does not cause any difficulties,
because the collections are handled flattened [1].

The value of the expressions are handled similarly to the type function: The
function Value retrieves the position of the expression and returns its value. Using
the notation of common progamming languages, such as C, the difference between
Restbody/pos and Value(Restbody/pos) is the following: Restbody/pos
is similar to a pointer. In contrast, Value(Restbody/pos) is the value in the
pointed memory block.

OCL allows the user to define local variables. In OCLASM, these variables are
handled by the function Local. The function has one input parameter: the name of
the variable and it returns the position of a variable declaration expression.
Variable declarations contain the name, type and value of the variable. If there is
no local variable defined with the given name, then the function returns undefined.
Name of the local variables are handled by the unary function Name, which has
one input parameter, the position of the variable expression. Name returns
undefined, if the position is not a valid variable definition.

OCLASM handles all four types of collections (Set, OrderedSet, Bag and
Sequence) by arrays indexed by integer numbers. Indexing is denoted by
brackets. The items in the arrays are the items in the collections, for example
myset[3] means the third item in the collection myset. The arrays can be
traversed by the forall expression of ASM, obtaining every element. The
dynamic function Length helps to query the number of items contained by the
collection.

Tuple types are also handled as arrays, but here the indices are the names of the
tuple items. For example the expression Tuple(x: Integer = 5, y: String
= 'Ok') results an array with the indices ‘x’ and ‘y’. Tuple items can have
different types, thus, using the definition of the previous example tuple["x"]
results an Integer value, while tuple["y"] results a string.

4.3 The Definition of OCLASM

Using the previously defined functions, the syntax of OCLASM can be defined:

Definition 4 The vocabulary ΣOCLASM of our OCLASM formalism is assumed to
contain the following characteristic functions (arities are denoted by dashes):

• undef, true, false, pos/0

• RestBody/1, Child/1, Top/1, Type/1, Value/1, Name/1, Local/1, Length/1

• meta/1, navMultiplicity/2, navigateTo/2, getAttribute/2.

The first two rows of functions definition describe the dynamic functions, while
the last row contains the monitored functions.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 125 ░

Definition 5 The superuniverse | | of a state of ΣOCLASM is the union of two
universes: (i) the possible programming Phrases of OCL, and (ii) the possible
positions of the Phrases in the abstract tree representing the constraint.

4.4 Transition Rules

The input of the formalism is the OCL constraint. It is important that the
constraint must not use abbreviations. For example to query the attributes the
expressions must be fully expanded. Thus, age is not valid, but self.age is
valid when the formalism is applied.

Transition rules describe how the states of OCLASM change over time by
evaluating expressions and executing statements of the input program. Initially,
RestBody is the given method body, pos is its start position and Local is empty.

All Phrases are evaluated from innermost to outermost. This basic behavior is
implemented in the rule eval. Each language construct available in OCL has
well-defined rules describing the right order of execution of the subexpressions.
For example in the case of conditional expressions, the condition is evaluated first.
The rule eval obtains the expression at the current position and updates the
function pos according to the right order of execution. Pos is updated from
unevaluated expressions to the appropriate subexpressions until an atomic
expression, for example a primitive literal is reached. For binary expressions, the
left-to-right evaluation strategy is used. When the computation of a given
expression is finished, then the Value and Type functions is updated for the
position of the expression. If the whole constraint is processed then the topmost
expression holds the value of the constraint (supposing that the constraint can has
a return value, like invariants). For the sake of simplicity, eval has a return value
that is the Value of the evaluated expression. Language constructs appear not only
in the rule eval, but each language constructs has its own rule. While eval
describes the execution order, these rules describe the semantics of the expression.
Although the OCLASM formalism presented in this paper is capable of describing
all OCL operations, we present only a few rules showing the method in practice.
Other operations can be formalized similarly. To simplify the examples, we use
r/p instead of RestBody/pos.

Firstly, a very simple rule, the VariableDeclaration is shown. The function eval
obtains the position of the children expressions (variable name, type and init
value) and executes them before this rule is executed.

rule VariableDeclaration(VarName, VarType, VarInit)
{
 Name(r/p) = VarName
 Type(r/p) = eval(VarType)
 if (VarInit!= undef)

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 126

 Value(r/p) = eval(VarInit)
 else
 Value(r/p) = undef
 endif
}

Secondly, the rule for iterate operations is presented. It is essential to
formalize this operation, because every other collection operation can be
accomplished by using iterate [1]. For example, the collection operation
count() can be simulated by an iterate expression

iterate(i : Integer, r Integer = 0 | r+1).

The node iterate has exactly four children in the abstract syntax tree: (i) the
collection, where he operation is applied; (ii) the declaration of the iterate variable,
(iii) the declaration of the result variable, and (iv) the iteration body.

rule iterate(CollDef, IteratorDecl, ResultDecl, Iteration)
{
 eval(CollDef);
 eval(IteratorDecl);
 eval(ResultDecl);

 Value(Local(Name(ResultDecl)))= Value(ResultDecl)
 Type(Local(Name(ResultDecl))) = Type(ResultDecl)

 forall collectionElement in Value(CollDef)
 Value(Local(Name(IteratorDecl)))= collectionElement
 Type(Local(Name(IteratorDecl))) = Type(IteratorDecl)
 eval(Iteration);
 endfor

 Value(Local(Name(IteratorDecl)))= undef;
 Value(r/p) = Value(Local(Name(ResultDecl)));
 Type(r/p) = Type(Local(Name(ResultDecl)));
 Value(Local(Name(ResultDecl)))= undef;
}

The third example shows the rule constructed for navigation expressions. Here the
model-based, external functions are also used. The rule evaluates the origin,
namely, it obtains the model item, which is the starting point of the navigation. As
next, the rule checks the multiplicity of the rule, if it allows exactly one
connection, then the result is a ModelItem, in any other case the result is a
collection of ModelItems. Since the function navigateTo always returns a list
(with the IDs of the destination nodes), thus, in the first case the first element of
the result array is used (navigateTo(Value(Origin), DestName)[0]). In

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 127 ░

this case the type of the result is the ID of the meta node of the destinations node.
If the multiplicity is not 1, then a new collection is created and returned.

rule Navigate(Origin, DestName)
{
 eval(Origin);
 if (navMultiplicity(Value(Origin),Name(DestName))==1)
 Value(r/p)= navigateTo(Value(Origin),DestName)[0]
 Type(r/p) = ModelItem
 else
 Type(r/p) = Set(ModelItem)
 Value(r/p) = Set()
 forall ModelId in navigateTo(Value(Origin),DestName)
 Value(r/p)[Length(r/p)+1)] = ModelId
 endfor
 endif
}

Conclusions

Since visual model definitions cannot describe models precisely enough, thus,
visual model language definitions must be extended with textual constraints. OCL
is one of the most popular textual constraint language; it is essential to provide
precise, unambiguous definitions in several modeling techniques such as UML, or
metamodeling. One of the key features of OCL is the mathematical formalism
based on set theory with a notion of an object model and system states. This
formalism can prove the completeness of the models using OCL, but it does not
contain the definition of constraint execution, or the dynamic behavior of the
constraint expressions. Due this limitation of the OCL formalism, the correctness
of the algorithms cannot be proven in general. This restriction meant that we could
not prove the correctness of our optimization algorithms in a mathematical form.

This paper has presented OCLASM, a new formalism for OCL. The paper has
presented the main reasons, why a new formalism was made instead of extending
the existing one. The new formalism is based on the popular ASM technology,
and it can be used to study the dynamic behavior. ASM allows to define the
behavior in a compact, yet rigorous way. The basic idea of the formalism is to
create rules for all language expressions, such as iterate, and use these rules to
simulate the validation. OCLASM handles the constraints as a sequence of
statements and expressions and it navigates through these programming units
using a function pointing to the current expression. Model-based operations use
monitored (external) functions showing that constraint validation must be
independent from the current model representation.

The mechanism of the formalism method has been shown including how to handle
language construct, such as tuple types, or collections. The formal definition of

G. Mezei et al.

A New Formalism Technique for OCL

 ░ 128

OCLASM has also been presented and the paper also includes several rules for the
most important language constructs.

Using the new formalism of OCL, it is possible to create and validate algorithms
based on OCL. OCLASM can guarantee the mathematical background for
advanced constraint handling, for example for optimizing algorithms. This
extension for OCL can improve handling of textual constraints and, thus, the
efficiency of visual model engineering. Future work mainly focuses on describing
the correctness of our OCL optimization algorithms and proving their correctness
using this description.

Acknowledgement

The paper is established by the support of the National Office for Research and
Technology (Hungary).

References

[1] Jos Warmer, Anneke Kleppe: Object Constraint Language, The: Getting
Your Models Ready for MDA, Second Edition, Addison Wesley, 2003 [2]
UML 2.0 Specification, http://www.omg.org/uml/

[2] Gergely Mezei, László Lengyel, Tihamér Levendovszky, Hassan Charaf:
Extending an OCL Compiler for Metamodeling and Model Transformation
Systems: Unifying the Twofold Functionality, INES 2006

[3] G. Mezei, T. Levendovszky, H. Charaf: An Optimizing OCL Compiler for
Metamodeling and Model Transformation Environments, Working
Conference of Software Engineering, 2006

[4] G. Mezei, T. Levendovszky, H. Charaf: Restrictions for OCL Constraint
Optimization Algorithms, OCL for (Meta-) Models in Multiple Application
Domains (OCLApps) Workshop, 2006

[5] Egon Börger, Robert Stärk, Abstract State Machines: A Method for High-
Level System Design and Analysis, Springer-Verlag, 2003 [6] Bison,
Official Homepage, http://www.gnu.org/software/bison/bison.html

[6] M. Richters: A Precise Approach to Validating UML Models and OCL
Constraints. PhD thesis, Universit at Bremen, Bremen, Germany, 2001

[7] Stephan Flake: Towards the Completion of the Formal Semantics of OCL
2.0. ACSC 2004: 73-82

[8] Stephan Flake, Wolfgang Müller: An ASM Definition of the Dynamic
OCL 2.0 Semantics. UML 2004: 226-240

[9] Robert F. Stärk, Joachim Schmid, Egon Börger: Java and the Java Virtual
Machine: Definition, Verification, Validation, Springer Verlag, 2001

