
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 129 ░

The A-Shaped Model of Software Life Cycle

Csaba Szabó, Ladislav Samuelis
E-mail: Csaba.Szabo@tuke.sk, Ladislav.Samuelis@tuke.sk
Department of Computers and Informatics, Faculty of Electrical Engineering and
Informatics, Technical University in Košice, Slovakia

Abstract: This paper introduces a new, so called A-shaped software life cycle (SWLC)
model. We analyze its advantages and disadvantages and highlight the role of the tests in
this model. Later, we show the granularity of the incremental development and its impact
on software evolution. Finally, we discuss the parallel feature of this model.

Keywords: A-shaped model, incremental development, software life cycle, test evolution, V-
shaped model

1 Motivation

The waterfall [5, 10] or the V-shaped [11] SWLC models are a sequential path of
action (process) execution. Each phase must be completed before the next phase
launches. The V-shaped model emphasizes testing and planning testing with a
breath of parallelism between planning and design. But none of them enables
evolution – incremental development in the test planning or in the application
design phase. The concept of evolution is also the topic of the machine learning, e.
g. [6].

Our goal is to design a new model for supporting parallelism and evolutionary
design of the application and of the test plans too. Test planning cannot be
separated of the application design because of its metrics' positive influence by
identification of the costs of testing.of each component as shown in the papers [8,
9].

2 Introduction to the Model

This model copies the classical sequence of actions from the waterfall (or V-
shaped) model. It stems from the requirements and branches into two processes
which end with implementation of the application resp. implementation of the test

Cs. Szabó et al.

The A-Shaped Model of Software Life Cycle

 ░ 130

plans. We introduce here and emphasize the mutual influence between the
development and test planning phases based on observation we state that some
activities may be executed in parallel.

Figure 1
The A-shaped Model

Requirements engineering (R). In this phase the requirements [1, 10] are
gathered and preprocessed in a way of their separation into two sets. One of
these sets is the basis for the application development, the another one is the
basis for designing the tests.

2.1 The Process of Design

Design – high level (DH). This phase includes the implementation of the
functionalities at the highest level of abstraction.

Design – low level (DL). In this phase we refine the ideas from the higher levels
iteratively and incrementally. In separated cases, the test planning process may
produce tests due to those some selected elements of the design may change –
test driven development of the functionality [2, 4].

2.2 The Process of Planning

Planning – high level (PH). This phase is about functional test planning. Test
plans are prepared for testing functionality and are decomposed
(hierarchically) at this level.

Planning – low level (PL). The detailed planning of tests and dependency
analysis follows the decomposition. After the development of the structure of
functionality and design oriented tests, a new functionality can be introduced
via inclusion of a new functionality oriented test or via a new design element
at the selected level of abstraction. In other words, inclusion (or deletion) of
functionalities may be executed in both test driven [2, 4] and classical (in the
design process [3]) way.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 131 ░

2.3 Implementation

Implementation (I). This is the final phase of refinement (design) where all the
coding takes place.

Test implementation (T). The test plans are implemented in the form of a
program, or other testing code.

2.4 Description of the Phases and their Results

By the analogy with the waterfall model, we distinguish between R- (from
Requirement), H- (from High level), L-phases (from Low level) and
implementations in this model.

2.4.1 R-phase

The first phase belongs to the requirement engineering [1, 10]. The outputs are
two subsets from the perspective of their usefulness in the design and testing.
During this process the requirements are decomposed and categorized. Categories
serve for better requirement tracing and separation.

Two phases follow after the R-phase in parallel: higher level design and planning
of testing.

2.4.2 H-phases

At the higher level, we can see two phases executing in parallel. Both of them are
based on functional and structural decomposition as refinement activities.

Higher level design interprets architectural ideas of the system being developed,
higher level planning outputs functional testing concepts at a very high level of
abstraction – the basic structure of the upcoming tests on both architectural and
behavioral base.

Both phases result into their lower level correspondents.

2.4.3 L-phases

The core of the SWLC model is built up from these phases, DL and PL (the L-
phases). It is the point where the parallel threads are synchronized. These two
phases may be executed in parallel but there is a significant influence between
them that makes the core of the method incremental (we describe it later in
sections 3 and 4).

A detailed model of the system is designed in the phase that includes the full

Cs. Szabó et al.

The A-Shaped Model of Software Life Cycle

 ░ 132

architectural and behavioral specification of the system in the modeling language
selected by the designer. The whole model is built from the results of the higher
level design using similar refinement steps. The only difference is, that all data are
specified here with the design of the operations with them.

The phase results into the model of the tests, the behavioral and architectural
specification of tests, test contexts and data. The test cases are refined to the crisp
values and dependency definitions (e.g. which design element is tested by which
test case). These results come from the stepwise refinement of higher level test
specifications.

2.4.4 Implementations

Implementations (the final system and the implemented tests) are generated during
the whole development many times as prototypes. These implementations are the
outputs of the actual models at the L-phases. The line between the design and the
implementation is clear: the point of applying a concrete, programming language
specific aspect. The mentioned border is that between the portable and special
architecture.

Further the implementation of the system is stressed against the corresponding
tests in the testing procedure.

2.5 Features

The features (as always from a certain aspect) can be divided into two groups [3],
e.g. advantageous and disadvantageous ones. In the next sections, we analyze
them.

2.5.1 Advantageous Features

• Design is split into levels (DH , DL), the lower levels are developed by
refinement steps.

• DH is parallel to PH , so the requirements can be processed in parallel (for
tests and for the application).

• Tests are developed by refinements from the highest to the lowest level that
offers better portability of the tests (test models).

• DL and PL influence each other by offering new requirements for the
other (parallel) thread of execution, that makes the process incremental.

• Requirements are divided into two groups during the engineering phase that
is the prior factor of categorization. These output sets may be further divided
into subsets of different categories, e. g. priorities.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 133 ░

• The model fully supports requirement tracing and through the documented
relations between the design and test elements an extended feedback to the
design too.

• Due to the fact, that the system and test implementation phase are executed
in parallel, the delivery of the application and the tests for it could be
synchronized – this can shorten the SWLC time.

2.5.2 Disadvantageous Features

• The parallel execution of the DL and PL is determined by the mutual
influence between these phases.

• The dependency detection procedure could become very complex at the
beginning of the development while detecting the relations between the base
sets of design and test elements.

• The SWLC model does not provide a notation or a set of patterns to increase
reusability.

• There are no explicit mentions e. g. about the missing maintenance and other
SWLC phases.

3 Remarks on the Evolution of the Tests

The model of the tests includes records about the used (tested) design elements
which are the traces for the change propagation or just for the dependency
monitoring.

These records allow to define a change propagation across both models.

Changes caused by design activities propagate changes in the test model in the
form of a changing requirement what and/or how to test. In this way, change
propagation is done by changing the initial requirements for the affected tests. The
adaptation process (to the change) is de facto started as introduction of a new
requirement or a modification into the requirement set. Looking at it from a wider
perspective, there is an evolution inside the SWLC model.

This idea works vice versa for the design thread.

4 Remarks on the Parallelism

Considering the two outputs from the R-phase (no influence between L-phases)
we can split the activities into two groups.

Cs. Szabó et al.

The A-Shaped Model of Software Life Cycle

 ░ 134

The design thread is than the same as in the waterfall model. The test development
represents as a separated development of the testing application.

The parallel threads allow an independent design of tests and the application, but
without the joining of them we loose the ability to design complete tests, e. g. tests
specialized (passed) to the designed components of the system. On the other hand,
joining of the test planning thread with the application design one provides the
ability of test driven development [2] of some parts of the system.

Conclusions

We showed the A-shaped SWLC model and its pros and cons. This model covers
the test planning phases of the SW development, it shows the location of these
phases and the dependencies between them and the design ones.

The development of both the application and the tests is model driven that
increases the portability of the solution being developed.

The model covers the evolution of the tests via considering the design as the
extension of the requirements set for test design and planning. It may include the
possibility to generate test cases to the design [7], but with the extension to map
the relations between these test plans and tested design elements (and the tested
functionality too).

The next step in the development of this model is the extension of the abstract
system dependency graph [12] by the test plans and the requirement hierarchy and
putting it to a higher level of abstraction (considering not only classes as
elements).

Acknowledgements

The research was supported by the following grants:

• Mathematical Theory of Programming and its Application in the Methods
of Stochastic Programming. Scientific grant agency project (VEGA) No.
1/2181/05

• Technologies for Agent-based and Component-based Distributed Systems
Lifecycle Support. Scientific grant agency project (VEGA) No. 1/2176/05

References

[1] Jim Arlow, Ila Neustadt. UML 2 and the Unified Process: Practical
Object-Oriented Analysis and Design. Addison-Wesley, 2nd edition, June
2005, ISBN: 0-321-32127-8

[2] Kent Beck. Test Driven Development: By Example. The Addison-Wesley
Signature Series. Addison-Wesley, 2003, ISBN: 0-321-14653-0

[3] Douglas Bell, Ian Morrey, John Pugh. The Essence of Program Design.
Pretince Hall Europe, 1st edition, 1997, Hungarian translation:
Programtervezés, Kiskapu Kft., 2003, ISBN: 963-9301-57-4

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 135 ░

[4] Chromatic. Extreme Programming Pocket Guide. O’Reilly Media, Inc., 1st
edition, July 2003, ISBN: 0-596-00485-0

[5] Zdenk Havlice. Modelovanie a prototypovanie informačných systémov.
elfa, s.r.o., January 1999, ISBN: 80-88786-95-9

[6] Kristína Machová. Strojové učenie. Princípy a algoritmy. ELFA, s. r. o.,
Košice, Slovakia, 2002, ISBN 80-89066-51-8

[7] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, Paul Ammann: Generating
Test Data From State-based Specifications. The Journal of Software
Testing, Verification and Reliability, 13(1):25–53, March 2003

[8] Zoltán Porkoláb, Ádám Sillye: Comparison of Object-Oriented and
Paradigm Independent Software Complexity Metrics. ICAI'04 6th
International Conference on Applied Informatics, Ed. Lajos Csőke et al.
Eger, 2004, pp. 435-444

[9] Zoltán Porkoláb, Ádám Sillye: Towards a Multiparadigm Complexity
Measure. 9th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering QAOOSE Workshop, ECOOP 2005,
Glasgow, pp. 134-142

[10] Ian Sommerville: Software Engineering. Addison-Wesley Publishers Ltd.,
Pearson Education Ltd., Boston, MA, USA, 7th edition, 2004

[11] Csaba Szabó: The V-shaped Model from the Testing’s Point of View. In
Proceeding from the 6th PhD Student Conference and Scientific
Competition of Students of Faculty of Electrical Engineering and
Informatics, Technical University of Košice, pp. 127-128, Košice,
Slovakia, 2006, elfa, s.r.o.

[12] Z. Yu, V. Rajlich: Hidden Dependencies in Program Comprehension and
Change Propagation. In Proc. International Workshop on Program
Comprehension, pp. 293-299, IEEE Computer Society Press, 2001

