
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 221 ░

Multiparadigm Approach to Software System
Evolution

Jana Bandáková
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of Košice
Letná 9, 041 20 Košice, Slovakia
jana.bandakova@tuke.sk

Abstract: Every software system during the life cycle undergoes an evolution in dependence
on new requirements such adding a new functionality, improving or removing the existing
one, improving the performance of system and so on. Nowadays, in regard of robustness of
software systems, new possibilities of an automatic evolution of existing software systems
are searched. The human intervention to an evolution process should be as minimal as
possible. There are many researcher teams that try to solve this problem, mostly using
object oriented approach. In our research project we concentrate on suitable properties of
functional, object-oriented and aspect-oriented paradigm. An experimental process
functional language (PFL) has been developed to combine and integrate suitable
properties of these paradigms. The paper deals with particular paradigms and how these
paradigms and their properties will be used for our purpose. Also source to source
transformation from PFL to Petri Nets will be shown.

Keywords: software system evolution, aspect paradigm, process functional paradigm, Petri
Nets

1 Introduction

Many researchers try to solve the problem of software system evolution especially
using object-oriented paradigm. In our research project we concentrate in solving
this problem on functional paradigm. Functional languages [10, 11] represent a
declarative manner of program development that is based on mathematical
understanding of problem. Using mathematical formalism and constructions with
a strict defined semantics the problem can be described effectively. On one hand,
functional languages can increase the reliability of the system from the correct
functionality point of view, but on the other hand, using only functional languages
not all real world events such states, input and output functions, error handling etc.
can be expressed because of lack of side effects (lack of assignments). Therefore it

J. Bandáková

Multiparadigm Approach to Software System Evolution

 ░ 222

was necessary to extend pure functional paradigm using imperative and object-
oriented properties [14]. At Faculty of Electrical Engineering and Informatics the
Process Functional Language (PFL) has been developed. This language combines
appropriate properties of functional, imperative and object-oriented paradigms.
Additional improvements can be achieved using aspect-oriented techniques which
are based on weaving certain parts of code (advices) to an original source code
without its modifying. The process of weaving can be static or dynamic. In our
research project we concentrate on dynamic weaving process because it can
change and control the behavior of the software system during its run time. In
Section 2 our motivation will be described, in Section 3 the process functional
paradigm will be introduced, in Section 4 an easy example of source to source
transformation from PFL to Petri Nets will be shown. Section 5 discuss the aspect-
oriented paradigm, in Section 6 related works are mentioned. In conclusion future
goals are resumed.

2 Motivation

An existing software system during its life cycle undergoes an evolution in
dependences on new requirements. Evolution is an inevitable process when
developing any type of software system and belongs to costly stage in its life
cycle. Automatization of this process will reduce time costs and resources required
to carry out this stage of the life cycle and development. To express large and
complex software systems multiple paradigms are required. For our goals we
focus on relation between different paradigms (pure functional, object-oriented
and aspect-oriented). Based on the idea of integration of positive properties of
particular paradigms, the process functional paradigm has been developed. In
addition, it was determined that using aspect-oriented approach the behavior of the
software system can be controlled and make the evolution process automated.
The weaving mechanism should be a mechanism for automatic implementation
that is based on process functional paradigm. Pure functional specification,
algebraic specification and temporal logic will be used by goal definition of the
evolution. It means, the software system can be seen from 3 different points of
view – pure functional, algebraic and temporal logic (as subsequent of events).

3 Process Functional Paradigm

As mention about, the main reason for developing the process functional paradigm
was to associate positive properties of pure functional, imperative, object-oriented
and nowadays also aspect-oriented paradigms. The paradigm comes out from pure

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 223 ░

functional language Haskell [6, 7, 8]. Primarily, the pure functional language was
enhanced to store the values in memory cell through environment variable. The
environment variable expects some data value (value of some type T), but may
also contains an undefined value (⊥). Also unit value () is used and has a
function of control value to access the value stored in memory cell. Large systems
can communicate through the environment variables exchanging and accessing its
values. On the other hand, the environment variable serves as an attribute for
arguments of pure function. Such function with attributed argument is called
process and environment variable is used only in type definition of the process,
not in its definition [6, 7, 12]. There are two basic processes that can handle with
values stored in environment variable – data process (data) a control process
(control):

data :: v T → T control :: v T → ()

 data x = x control () = ()

 a.) data process b.) control process

As mention about, using these processes the value stored in environment variable
can be handled as follows: applying the data process data to a data value (of type
T), the value in environment variable will be updated to an actual value of process
argument. On the other hand, applying the control process control to unit value ()
(of unit type ()), the value in environment variable will be accessed, but remains
unchanged. Using environment variables, state can be manipulated like in
imperative language. In the following, an example of such data process will be
shown and illustrated. Let us have a process of two arguments as follows:

proc :: uT1 → vT2 → T

 proc x y = x∗ y

Let us assume that values in both environment variables are undefined ⊥ (Fig. 1).
The process proc is applied to arguments 5 and 6 (proc 5 6). The result of the
application will be 30. The application affects also the value in environment
variables as follows: environment variable u contains value 5 and environment
variable v contains value 6 after application. It means, both of these environment
variables are updated (Fig. 2). It is necessary to say that the application (proc 5 6)
is evaluated by subsequent parameter passing.

J. Bandáková

Multiparadigm Approach to Software System Evolution

 ░ 224

Figure 1

Before application

Figure 2

After application

In the example above u and v in type definition of process proc are environment
variables that represent also attributes of pure function arguments. On the other
hand, variable x and y in definition of process proc represent lambda variables. In
process functional paradigm the lambda variable represents not only bound
variable used in the body of an anonymous function but also a stack memory cell.
Next, an example of using unit type to access the value in environment variable
will be shown. Let us have a pure function function with a local process
local_proc (contains an environment variable as an attribute of function’s
argument T1) as follows:

 function :: T1 → T2 → T

 function x y = local_proc x y + local_proc () y + 2

 where

 local_proc :: xT1 → T2 → T

 local_proc x y = x*y

When we apply function function to arguments 5 and 6 (function 5 6) then the
result of this application will be 62. Applying the process local_proc to a unit
value () the value 5 stored in environment variable, as a result of the previous
application of this process, is accessed and used as an argument of process
local_proc. The variable x in function function designates the lambda variable and
x in process local_proc designates an environment variable – it means, for both of
x the same memory cell on the stack is used.

As can be seen, the processes manipulate with a state what can be designated as
state transformation that has an important role in source to source transformation
from PFL to Petri Nets.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 225 ░

4 Using Petri Nets

Petri net is one of the several mathematical representations of discrete distributed
systems. It is also a modeling language that graphically represents the structure of
the system [9]. Our goal is to achieve that Petri net can be used to execute the
program. The main idea is that we have pure functions (for example add, sub) and
environment variables that are separated from each other and can be associated so
that pure functions are connected with environment variables (input, output),
whereby these variables can be shared by various functions, to achieve a
transformation. These transformations are separated and have pure functional
core. For our purpose Petri nets can be defined as follows:

 PN = (E, T, I, O), where

E = {u, v, w | u: Tu, v: Tv, w: Tw} represents set of typed variables (variable
contains the value of some type T or undefined value ⊥ so T = T∪ {⊥ }),

T represents the set of transformations from input to output,

I: T → E represents an input function,

O: T → E represents an output function

In state transformation has an important role state function or transition function
that transforms input values to output values and is defined as follows:

 δ: Tn → T → Tn

For example, if there are two inputs values that are transformed to two outputs
values the transition function is defined as follows:

 δ: T2 → T → T2

 T2 = Tu × Tv

A simplified example of such transformation is shown on Fig. 3.

Figure 3

A simple example of transformation

J. Bandáková

Multiparadigm Approach to Software System Evolution

 ░ 226

This idea will be shown on a simple example. Let us define two pure functions
function1 and function2 as follows:

function1:: T1 →T2→T3

function1 x1 x2 = expr1

function2:: T1 →T2→T4

function2 y1 y2 = expr2

At this moment, the form of expression on right hand side is not important. Next,
the input and output functions are defined:

 input :: v1T1→ v2T2 → ()

 input z1 z2 = out (function1 () ())

(function2 () ())

 where

 function1 :: z1T1 → z2T2→T3

 function2 :: z1T1 → z2T2→T4

output :: v2T2→ v3T3 → ()

output _ _ = ()

Based on this, the transition (from input to output) can be defined as t = (input,
output) and t ∈ T. As mention above, pure functions and environment (input,
output) variables are separated from each other. Next, pure functions are
connected with these variables in order to perform a transformation. These
transformations are separated.

5 Towards Aspect-oriented Approach

Aspect-oriented programming languages provide facility to interrupt the flow of
control in application at specific points (join points), and insert new computation
(advice) at this point without modifying the original source code [3, 13, 15].
Advice represents a piece of code that can manipulate the surrounding state and
affect globally running application. In order to triggered advice at specific join
points, specified conditions defined by programmer should be met. When
conditions are met an advice is woven in join point by weaving mechanism. The
weaving mechanism is crucial because it can change and control the behavior of
the software system during its run time. Generally, aspect-oriented paradigm has
been built as an extension to object-oriented and procedural languages but also
functional languages can benefit from positive properties of aspect-oriented

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 227 ░

approach. In our research project aspects are a subject of research, have been
integrated to process functional language and analyzed. The weaving mechanism
seems to be an appropriate mechanism for automatic implementation that is based
on process functional paradigm and enables the process of evolution to be
automated.

6 Related Works
Many researches concentrate on dynamic software system evolution and how to
change the behavior of an application during its execution without shutdown it.

In [1] an architecture for ‘closing feedback loop’ over the entire software system
evolution process is proposed and enable the construction of self-evolving
software systems that are capable of automatically detecting when changing
external circumstances or internal conditions can better handled by alternate
software modules and enables dynamically swap these modules into place. They
introduce a concept of evolution engine that oversees a running application and
decides when and how to evolve it based on run time information.

Manuel Oriol in his thesis [4] concentrates also on the dynamic software system
evolution based on object-oriented languages. He tries to provide dynamic,
unmarshalled and unanticipated evolution of software systems. The main idea of
this consists in maximum disconnection of the particular parts of an application
and on concepts of the anonymity, associative naming and asynchronism. As
mention above, the work concentrates on object-oriented languages where a piece
of code is connected to another in such cases as class inheritance, direct references
from one object to another, synchronization constrains between different pieces of
code, etc. The basic building blocks of an application represent entities that can
communicate with each other only through services that are handled with services
invocation by communication infrastructure. An entity requests invocation of the
services by providing a description of its need to service manager that chooses the
suitable service, according to their descriptions without naming them.

In [2] Peter Ebraert and Eric Tanter try to update an application dynamically using
based-application and meta-level layer that are connected. Through meta-level
layer manipulation the behavior or structure of a based-level application can be
changed. The application has cleanly separated entities at the based-level and its
representation at the meta-level. The application can self-evolve through meta-
level manipulation.

In [5] a framework to control software system evolution has been developed. The
framework permits the analysis and prediction of indicators of software system
evolution such system size or complexity and defines a set of methods to handle
the problems like unused object removing, libraries re-modularization using

J. Bandáková

Multiparadigm Approach to Software System Evolution

 ░ 228

genetic algorithm or restructure the source file directory organization. It is based
on diagnostic and predicting system reorganization opportunities and performing
some reengineering actions.

Conclusions

Separation of concerns and modularization are essence for software system
evolution. By combining transformations, that was described in section 4, we need
to make provision for a property of system we would like to obtain through these
combinations. The essence problem of software system evolution are system‘s
properties because these properties are often expressed not clearly in specification
of the software system. If the specification is not clearly then the behavior of the
system can not be changed effectively. Our future goal is to express properties of
the system as clearly as possible based on algebraic specification and try to predict
these properties in the future applying decision rules in process of evolution. The
crucial role in software system evolution has weaving process.

Acknowledgement

This work has been supported by the Scientific grant agency project (VEGA) No.
1/1065/04 Specification and Implementation of Aspects in Programming.

References

[1] Ch. Dellarocas, M. Klein, H. Shrobe: An Architecture for Constructing
self-evolving software systems. In ISAW ’98: Proceedings of the 3rd
International Workshop on Software Architecture, pp. 29-32, New York,
NY, USA, 1998, ACM Press

[2] P. Ebraert, E. Tanter: A Concern-based Approach to Dynamic Software
Evolution. In Dynamic Aspects Workshop (DAW) proceedings, pp. 51-55,
Lancaster UK, March 2004, In conjunction with the conference on Aspect
Oriented Software Design (AOSD 2004)

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold:
An Overview of AspectJ. ECOOP’01, 2001, LNCS, Vol. 2072, pp. 327-
355

[4] M. Oriol: An Approach to The Dynamic Evolution of Software Systems.
Thesis, pp. 1-211, 2004

[5] M. Di Penta: Evolution Doctor: A Framework to Control Software System
Evolution. Ninth European Conference on Software Maintenance and
Reengineering (CSMR'05) pp. 280-283, 2005

[6] J. Kollár: Unified Approach to Environments in a Process Functional
Programming Language. Volume 25, pp. 439-456, 2003

[7] J. Kollár: Process Functional Programming. Proc. 33rd Spring International
Conference MOSIS’99 - ISM’99, Information Systems Modeling, Rožnov

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 229 ░

pod Radhoštem, Czech Republic, ACTA MOSIS No. 74, pp. 41-48, April
27-29, 1999

[8] M. Behálek, P. Šalamoun: Parallel Process Functional Language. In
WOFEX 2006. Ed. Václav Snášel, Ostrava: FEI-TU Ostrava, 2006, pp.
304-310, ISBN 80-248-1152-9

[9] J. L. Peterson: Petri Net Theory and The Modelling of systems. Prentice
Hall, Englewood Cliffs, 1982, pages 288, ISBN: 0136619835

[10] P. Wadler: The Essence of Functional Programming. In 19th Annual
Symposium on Principles of Programming Languages, Santa Fe, New
Mexico, January 1992, draft, pages 23

[11] J. Peyton: The Implementation of Functional Programming Languages.
Prentice-Hall, 1987, pages 445

[12] J. Kollár: Process Functional Programming. Proc. 33rd Spring International
Conference MOSIS’99 - ISM’99 Information Systems Modelling, Rožnov
pod Radhoštem, Czech Republic, April 27-29, 1999, ACTA MOSIS No.
74, pp. 41-48, ISBN 80-85988-31-3

[13] D. Walker, S. Zdancewic, J. Ligatti: A Theory of Aspects. In Proc. of the
8th ACM SIGPLAN International Conference on Functional Programming,
Upsala, Sweden, August 2003

[14] M. Mernik, V. Zumer: Incremental programming language development.
Computer languages, Systems and Structures, 2005, Issue 31, pp. 1-16

[15] R. Douence, O. Motelet, M. Sfidholt: A formal definition of crosscuts. In
Proceedings of the 3rd International Conference on Reflection. (Kyoto
Japan, September 2001), pp. 170-186, ISBN 3-540-42618-3

