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Abstract: Recent results in retinal research have shown that ganglion receptive fields cover
the mammalian retina in a mosaic arrangement with very small overlap. Classical biology
inspired models of the retina performing image processing operations such as edge-detection,
in contrast, by using convolution of a filter and the image, map overlapping input image re-
gions to output signals. Without such an overlap, the output becomes a sparse sampling of the
filtered output, which leads to the loss of important pieces of visual information. This paper
proposes a retinal model with a non-overlapped receptive field structure. The model imple-
ments involuntary eye movements, tremors and drifts. Artificial eye-tremors, small vibrations
of the eyes, achieve receptive field overlaps through time. Artificial eye-drifts are also imple-
mented and used for orientation selective edge detection. Based on the experimental results,
the following three hypotheses are claimed in this paper: 1) convolution-based retinal models
are biologically inadequate, 2) eye tremors may play an important role in retinal contour per-
ception, and 3) artificial eye drifts may also be applied in artificial vision systems to achieve
orientation selectivity.

1 Introduction

Soft computing techniques, biology inspired approach to computation became more
and more popular in the last decade, with a lot of related research interest. Artificial
vision and image processing has also tried to exploit the knowledge accumulated
about biological vision systems, from the retina to the visual cortex. This lead to bi-
ologically inspired computational models of different parts or functionalities of the
visual system, from edge detection to more complex operations [1] [2].

There is however one thing in common between the majority of the so called biolog-
ically inspired models of image processing: their output image is computed as the
convolution of an input image and an image filter [3] [1]. This has two important
implications on the output image:

1 Input and output images have the same spatial resolution,

2 A certain pixel value on the input image influences several pixels values on
the output image.



According to findings in retinal research, the number of retinal cones (photorecep-
tors sensitive to color) is about 6 million, the number of rods (photoreceptors sen-
sitive to light regardless of its color) is about 125 million. Meanwhile, the number
of ganglion cells sending the visual information to the brain is about 1.2 million.
This suggests a heavy retinal image processing and compression (also referred to
as convergence), first described in [4, 5]. There is thus a difference of a magnitude
between the spatial resolutions of photoreceptors and ganglion cells. Furthermore,
receptive fields of mammalian ganglion cells barely overlap each other, they tend
to cover the foveal areas of the retina in a mosaic arrangement [6]. An important
implication is that a certain photoreceptor on the retina is very likely to influence the
output of only one ganglion cell.

The above findings pose a contradiction between the biology inspired, convolution-
based models of image processing, and the receptive field structure of the retina. To
solve this contradiction, this paper proposes an image processing model for edge-
detection, which is based on the non-overlapping arrangement of center-surround
structured retinal ganglion-cell receptive fields. The proposed model also performs
the information compression (convergence) experienced in the retina.

It has long been known that our eyes are never still, even during fixation. Scientists
today agree on the existence of three main involuntary eye movements during visual
fixation in humans: tremor, drifts and microsaccades ([7] [8]. The most interesting
eye movements concerning the proposed model are tremor and drifts. Tremor, the
smallest of all eye-movements, is an aperiodic, wave-like motion of the eyes [9],
with a frequency of roughly 90 Hz and amplitude of about the diameter of a cone.
Drifts are slow wandering motions of the eyes that take place between microsac-
cades, and can span through a few dozens of photoreceptors [10].

Experiments with the proposed model revealed that the output image quality be-
comes much better if a high frequency, low amplitude vibration (or we can call it an
artificial tremor) is introduced to the input image. If artificial drifts are also included,
and they effect the input image directly, the output image tends to contain oriented
contour segments corresponding to drift orientations.

Based on the contradiction between convolutional techniques and new findings in
biology, as well as on the experimental results published in this paper, the following
three hypotheses are claimed:

1 Convolution-based image processing models are biologically inadequate,

2 Eye tremors may play an important role in contour perception,

3 Artificial eye drifts may support orientation selectivity in artificial vision sys-
tems.



Figure 1
Approximation of biological receptive fields by matrix F used in the model

The rest of this paper is organized as follows: In Section 2 the model based on the
non-overlapped receptive field structure of ganglion receptive fields is presented. In
Section 3 this is followed by the application of tremors and drifts to the model, along
with experimental results. In the following Section, three hypotheses are claimed,
supported by the results of this paper and novel findings of biological research. Fi-
nally, Section 4 concludes the paper.

2 The proposed eye-inspired model for edge detection

2.1 Filters used for edge detection

The model that we propose in this paper performs edge detection based on the on-
center off-surround and off-center on-surround receptive fields reported to be present
in the retina by Hubel in [11]. On the retina, the size of the receptive fields increase
from the fovea towards the peripherals, causing blurred vision on these areas. The
model we propose considers only the foveal areas of the retina, where the size of
receptive fields is relatively small and uniform. This constrains the size of the recep-
tive fields of the model to be constant.

Receptive fields are represented by a 3 × 3 pixel-size, two-dimensional filter matrix
F (as in many previous models), each matrix value representing input weight with
which the corresponding stimulus is weighed. The configuration of weights depends
on the type of receptive field being modeled; on-centered fields have positive val-
ues in the central area, surrounded by all negative weights, while off-centered fields
contain a central negative value, surrounded by all positive weights.



Figure 2
The mosaic-like filter matrix arrangement over the input image

The weights of F used in this model resembles the Laplace-operator, which calcu-
lates the second derivative of the image. The Laplace operator is approximated by
an operator that contains the exponentials of 2 in order to facilitate binary represen-
tation and computerized implementation of the model (Figure 1).

2.2 Non-overlapped image filtering

Similarly to the non-overlapping receptive fields of the foveal areas of the retina, the
proposed model also lacks overlaps between filter matrices. The input image is tiled
using a mosaic arrangement of the filter matrix F in a non-overlapped manner. The
center of each F is at a distance of three pixels from the four closest filter matrix
centers. The image pixel values are multiplied by the corresponding F values and
a weighed sum is calculated for each filter matrix center. The matrix of the filter
centers provide the output matrix of the non-overlapped filtering operation. Figure
2 shows this processing structure.

Note that the output of this processing structure is identical to the 3-by-3 sub-
sampling of the convolution of the input image with the same filter matrix F. The
output thus contains 9 times less pixels than the output obtained using convolution.
In order to make the two results comparable, the size of the input image used in
convolution-based filtering is also reduced by a factor of 1/3 in each dimension.
Figure 3 shows the difference between the two approach, using the approximated
laplace operator in both cases.

The non-overlapped image filtering can be formalized as follows. Denote the in-
put image I, the filter mask F, the output images J and K obtained using classical
convolution-based and the non-overlapped filtering respectively. In classical convo-
lution based filtering, the output can be expressed as the convolution of I and F over



Figure 3
Input image (top), convolution (middle) and non-overlapped filtering-based (bottom) edge-detection

using the approximated laplace operator



a discrete 2D space:

J[x, y] = F ⊗ I ≡
+∞∑

j=−∞

+∞∑

k=−∞
F( j, k) · I(x − j, y − k). (1)

The result of the non-overlapped filtering K can be obtained from the result of the
overlapped filtering J, as follows:

Ki, j = Jm·i,n· j, (2)

where n and m indicate the size of matrix F, in most of the cases n = m = 3. It can
be seen from equation 2 that the number of elements in K is m · n smaller than those
in J. The bad quality of the non-overlapped result K shown in Figure 3 is obviously
caused by the exclusion of 8 pixels out of 9, when derived from the convolution-
based output J.

It is to note that the non-overlapped filtering gives similar results with any filter op-
erator matrix F, such as the sobel operator. In the proposed model a Laplacian-like
operator was used to achieve a maximal similarity to the retina.

In the next section we present how to overcome the poor quality of the output image
K obtained using non-overlapped filtering.

3 Artificial eye movements, results

The model described in the previous section resembles the eyes only in the arrange-
ment and connectivity of light sensitive cells (photoreceptors) and visual information
processing cells (ganglion cells) of the retina. While the eyes perform three different
motions (microsaccades, drifts and tremors), the proposed model is mechanically
static.

In this section first artificial tremors are introduced to the model. The artificial
tremors can be simulated by software, and can also be implemented by adding me-
chanical vibrations to the image sensor (camera). Later in the section artificial drifts
will also be introduced to the model.

3.1 Tremors

In order to create an artificial tremor that is maximally similar to its biological coun-
terpart, the physical properties of tremors have to be considered. According to [12]
the eye-tremors have a frequency of about 90Hz, and an amplitude of about one
cone. The critical flicker frequency of the eyes in foveal regions is about 10Hz [13].



Based on these measurement data, an artificial tremor can be designed for the non-
overlapped filtering model. The parameters are chosen to obtain an artificial tremor
with maximal similarity to the tremor of the eye-retina system. The parameters of
the artificial tremor are:

Amplitude: A = 2 pixels
Frequency: f = 9 f rame−1

Direction: random

The simulation of the tremors is done by the shifting of the input image I to a random
direction by one A/2 pixel, which yields the image Is1 . The shifted image Is1 is then
filtered in a non-overlapped manner using the filter F, resulting in Ks1 . This process
is done as many times as defined by the frequency parameter, resulting in images
Ksi , i = 1 . . . f . The f images are then integrated into one image K. The integration
can be pixel-wise weighed summation:

K =

f∑

i=1

wi · Ksi , (3)

where wi is the weight for each output image Ksi or maximization:

∀x, y : K[x, y] = max
i

Ksi [x, y]. (4)

The resulting image K is one output frame of the non-overlapped filtering system.

Using this approach, each output pixel aggregates edge information from its neigh-
borhood defined by the properties of the artificial tremor. Unlike in the static (tremor-
less), non-overlapped case, edge information contained in the input image will not
be lost, but aggregated into the output pixel. A similar information aggregation or
compression takes place in the retina, called convergence, which accounts for the
1:125 ratio between the ganglion cells and the photoreceptors.

The results of using the non-overlapped filtering with and without artificial tremors
are compared on Figure 4.

3.2 Drifts

Drifts are continuous motions of the eye occurring between microsaccades, and
sweep through about a dozen of photoreceptors. The role of drifts in the biolog-
ical vision system is to compensate microsaccades in maintaining accurate visual
fixation [12].

Based on the results obtained using artificial tremors, the question arose: what re-
sults would the non-overlapped filtering technique yield with the introduction of



Figure 4
The output of the non-overlapped filtering, without (left) and with (right) using artificial tremors. The

laplace operator was us in both cases

Figure 5
Non-overlapped filtering after applying a horizontal or a vertical artificial drift respectively

artificial drifts? To answer the question, the parameters of artificial drifts have to
be given. Again, we tried to design artificial drifts with a maximal similarity to the
parameters of eye-drifts found in biology. The result is a motion that goes through
15 − 20 pixels, in a given direction, following a straight line.

During an artificial drift, the output frames obtained by the non-overlapped filtering
with artificial tremors are used as input. The pixels of these frames are averaged
along the path of the drift, which is identical to applying a motion blur operator on
the frames.

The results of the application of artificial drifts on the images are shown in Figure 5.

For the first look the results are quite blurred and the small details became invisible.
A closer look however reveals that the pixels corresponding to an oriented contour
(horizontal or vertical in the case of the two sample images on Figure 5) are stronger
on the resulting image. This suggests that the application of oriented artificial drifts
on the edge detected image acts as an oriented edge enhancement operation. The



Figure 6
Orientation selective edge detection based on oriented motion blur and non-overlapped filtering

edge enhancement is however rather poor, which is not surprising since edge infor-
mation on the pixel level is not orientation selective, and the artificial drift integrates
contours perpendicular to its direction. Obviously this is something undesirable.
The result is also in accordance with results of Hubel [11], who showed that orien-
tation selectivity appears in the visual cortex, and not in the retina.

Going one step from the biological model of the eye gives much better results. It
is much better to apply oriented artificial drifts on the original image instead of the
edge detected image to obtain directed motion blur, with the purpose of orientation
selective contour detection. The motion blur operation is a directional noise filter
that smoothes noise (and any discontinuity in intensity level, including edges) in
one direction, but does not modify the discontinuities in a perpendicular direction.
The resulting image keeps the original contours that correspond to the blur direc-
tion, but blurs other contours as their orientation diverges from the blur direction.
Applying the non-overlapped filter with artificial tremors on such an image yields a
much better oriented edge detection, as shown in Figure 6.

Note that orientation selective edge detection using directed motion blur also per-
forms well with classical, convolution based edge detection.

3.3 Evaluation of the non-overlapped filtering in terms of spatial
and temporal resolution

The tremor-based non-overlapped filtering method proposed in this paper can be
useful in early functional stages of visual processing, primarily because of its accu-
racy and its low exigence of memory. The output image provided, while perfectly
capable of representing all relevant contour information, is reduced in size by a ratio
of 1:9 compared to the original input image. This is because every artificial neuron
receiving output corresponds to a 3-by-3 portion of the input. In a possible future im-
plementation modeling the variety of receptive field sizes on the retina, even greater



size reductions could be reached (the optic nerve in the human brain, for example
- which is the continuation of the output of ganglion cells at the back of the retina
- carry one thirteenth of the information amount that the ganglion cells previously
receive).

Due to the lack of overlaps in receptive fields, implementations of the model are also
faster than previous models. This is especially true when analyzing moving images.
A moving image can be sampled, and in one possible scenario, each output image -
arriving at every sampling interval - could contain the average of the last f samples.
Because of the adaptivity of this method, stable elements of the image would be
stable on the output (despite the fact that each sample was only filtered once instead
of f times), while rarely occurring sudden changes in the input images would yield
blurred image portions similar to those perceived when a rapidly moving object
crosses the visual areas linked with peripheral receptive fields. In this case, even
though each sampled image would be only filtered once (instead of f times), the
same effect could be achieved through time, because abrupt changes are very rare at
high sampling rates. This way, spatial attributes could be transformed into temporal
attributes, and because results would arrive at the same frequencies as previously,
computation time could be reduced by an order of magnitude.

4 Hypotheses

Supported by new findings in biology and experimental results presented in this pa-
per, the following three hypotheses are claimed:

Hypothesis 1: Convolution-based image processing models are biologically inade-
quate.

This hypothesis is supported by the recent research findings in biology, claiming that
receptive fields tile the surface of the retina in a mosaic arrangement with minimal
overlap. Such an arrangement also accounts for the high level of image compres-
sion found in the retina but not found in the case of convolution-based filtering.
If the same compression method (exclusion of 8 9th of the pixels) is applied to
convolution-based methods, the result lacks most of the information and is very poor.

Hypothesis 2: Eye tremors may play an important role in contour perception.

This hypothesis is supported by the experimental results of section 3 that show the
difference between the edge detected images obtained by using non-overlapped fil-
tering with and without artificial tremors. The experiments show that the application
of tremors dramatically enhance image quality. This is explained by the neighbor-
hood integrating compression principle of tremors, in contrast with the neighbor-
hood excluding compression principle of the tremorless, non-overlapped filtering



method.

The hypothesis may extend to the biological eye-retina system.

Hypothesis 3: Artificial eye drifts may support orientation selective contour detec-
tion in artificial vision systems.

The results in section 3.2 show that biology equivalent implementation of eye-drifts
do not produce orientation selective contours. On the other hand, the application
of artificial drifts on the input image causing motion blur tends to keep only the ori-
ented contours. Using the non-overlapped filtering can extract these contours, which
tend to have a specific orientation equivalent to the orientation of the drift.

Conclusions

A novel, biologically adequate image filtering method was proposed. The method
implements the non-overlapping mosaic arrangement of retinal receptive fields, as
well as the non-voluntary eye-motions, the tremors and drifts.

The characteristics of the proposed method are different from those of convolution-
based image filtering methods. Similarly to the retina, the non-overlapped filtering
also implements image information compression, as the result of non-overlapped re-
ceptive fields and artificial tremors. In convolution-based filtering no compression
is performed. The first hypothesis claimed in this paper is based on the above men-
tioned differences. It is to note that for human observers, the non-overlapped edge
detected image looks more expressive than the convolution-based one, which might
indicate that out vision system prefers the biology-close way of producing contour
images.

The experimental results done with the proposed non-overlapped method using a
Laplace operator show, that small, pixel-sized vibrations dramatically improve the
quality of edge detected images. This is generalized in the second hypothesis, which
claims that similar phenomena may exist in the eye-retina system, which would ex-
plain the yet unknown role of eye-tremors. This hypothesis requires further support
from biological research and computer-based experiments.

The paper also presented experiments where well defined motions passing through
a dozen of pixels were applied to the images, in analogy to eye-drifts. The role of
the motion was to cause oriented blur between image pixels. It was proved by sim-
ulations that if the motion has parameters similar to eye-drifts, where the ganglion
cells are fast enough to sample many times during the motion, orientation selectiv-
ity does not occur. However, if the same motion blur is applied to the input image,
which would happen if ganglion cells and photoreceptors were too slow to sample



many times during the motion, orientation selectivity occurs, as claimed by hypoth-
esis three, supported by experiments presented above.

All the three hypotheses claimed by this paper need further support, from both biol-
ogy and computer-based experiments.
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