
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 349 ░

Open Design Architecture and Artificial
Intelligence Agent Application in Information
Systems Practice

Miroslav Beličák
Department of Computer and Informatics, Technical University of Košice
Letná 9, 051 20 Košice, Slovak Republic, miroslav.belicak@tuke.sk

Abstract: This paper describes new type of information systems architecture as well as
current essential problems of information systems (IS). Article further introduces the
opportunity of utilizing artificial intelligence agents at practise of run-time environment for
initiated new architecture type. Proposed open design architecture should provide better
facility for modification of IS, because it prescribes tight coupling of IS design with
executable binary elements of IS. Thus, user can easily change the structure of IS without
necessity of IS execution suspension or disconnection of users. To achieve these goals, it is
possible to utilize software agents and artificial intelligence agents.

Keywords: information system architecture, design, artificial intelligence agent, software
agent, information system, run-time environment, user, designer

1 Introduction
A design and implementation of enterprise systems can require sizeable time and
finance means on customer and supplier side. Information system architecture
(ISA) plays very important role in software engineering process [4]. A lot of
information systems (IS) properties (such as scalability, security, robustness,
stability, etc.) depend on ISA. Next sections will describe a new information
system architecture type called ODA (Open Design Architecture) as possible way
of simplifying IS design and maintenance. The main idea of this architecture lies
in separating application functionality from presentation logic such as graphics
user interface and in coupling IS design together with IS - as will be shown below
together with advantages of such approach. Together with ODA architecture
description we outline possible utilization of software agents and artificial
intelligence (AI) agents in practise of information systems proposed for ODA run-
time platform.

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 350

2 Current State in Information System Architecture
Area

Presently three main information system architectures are in IT world. First is
Service-Oriented Architecture (SOA) [13, 14, 15, 16], which is the key paradigm,
that is used nowadays. It has significantly influenced organizational and
technological development [12]. Next is Model Driven Architecture (MDA).
OMG’s Model Driven Architecture (MDA) provides an open, vendor-neutral
approach to the challenge of business and technology change [17]. The last is
Component-Based Architecture (CBA). Component-Based Architecture is also
foundation for distributed component architectures [4] and includes mechanisms
and techniques for developing coarse (but still reusable) bussiness/software
implementation units. In next sections we will briefly describe these three main
architecture trends.

2.1 Service-Oriented Architecture
Service oriented architecture [8, 9, 10] (SOA) – combines the ability of remote
functions and objects (named services) calls with tools for dynamic service
discovery, emphasis is on interoperability [11]. In service oriented architectures,
applications are regarded as services accessible on network. IT infrastructure is
maintained on abstract level, which means that functionality is presented in the
shape of loosely coupled services, that can be made accessible to users
independent from lower level technology supporting the services. SOA as abstract
paradigm traditionally represented basic distributed architecture without
references to implementation [10]. Several technologies exist at present, that are
able of SOA’s practical realization: CORBA (Common Object Request Broker
Architecture), Microsoft DCOM (Distributed Component Object Model) and web
services – all of them provide required functionality. Architecture of SOA
applications differs from traditional software architectures, where architecture is
mostly static in nature. Architecture of SOA application is dynamic, what means
(except other consequences), that application can by composed in time of program
execution using existing services. SOA thus provided new way of creating
software architectures, where architecture is determined in time of application
execution and can be dynamically changed for fulfillment of new software
requirements [8].

Main components of SOA together with their roles are depicted on Figure 1.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 351 ░

Figure 1
Main components of Service-Oriented Architecture

2.2 Model-Driven Architecture
Model driven architecture is based on OMG (Object Management Group)
standards and it isolates business and application logic from technological
platform [5, 12]. Core idea of MDA [17, 18, 19, 20] is using of UML language for
specification of static interfaces and also dynamic behavior of components in
platform-independent models (so-called PIM-models, Platform Independent
Models). Furthermore, MDA defines rules, according to which can be PIM-
models mapped to multitude of platform-specific models (PSM - Platform
Specific Model) [17]. MDA is approach which supports development of the
system by using process aimed at models and generative process of development.
MDA improves quality of complex software systems based on creation of high-
level models of the system and automatic generation of systems architecture from
models [18].

OMG’s MDA accentuates modeling in software development. One of the
principal goals of MDA is support for platform independent application
development [19].

Substantial part of endeavor and price of distributed applications development
consists in modification of application according to requirements for support of
particular middleware-platform [20]. Considerable part of work leading to MDA
(or more generally MDE - Model Driven Engineering) was devoted to this topic.
It appears, that ultimate idea leading to these efforts is definition of the model,
which captures whole business logic of target application, but which is not bound

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 352

to specific middle-ware and is also not supporting concrete technology [20]. This
model is called PIM (Platform Independent Model) and it defines set of
transformations, automatically converting PIM to one or more models scaled to
chosen middle-ware. Result of such transformation is called PSM (Platform
Specific Model). On top of these models MDA presents so-called (Computation
Independent Model – CIM). This model describes system in context of its
environment (e.g. Business domain) and shows, what is expected from system's
execution (without describing details of how is system constructed). The principle
of Model-Driven Architecture is shown in the Figure 2.

Figure 2
The Principle of Model-driven Architecture

2.3 Component-Based Architecture
Architectures based on development of components (Component Based
Development Architectures - CBDA) are increasingly adopted by software
engineers [17]. CBA complements architectures SOA, CBA, EDA – all
approaches conforming to and supporting agile ‘user centric’ solutions (User
Centric Agile Solutions) [6]. Component Based Architecture (CBA) is the base for
distributed component architectures [6] and includes mechanisms and techniques
for development of coarse (but still) reusable bussiness/technical implementation
units, considering environment/container and decomposing service to more SBBs
(Service Building Block), which are connectable distributed parts associated with:
presentation logic, bussiness logic, resource management logic, integration logic,
logic of net events, security logic and other logics [6].

Component is executable part of source code providing sum of services in the
form of black-box [21]. Its services are accessible only through consistent

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 353 ░

published interface which embodies communication standards. Component must
be connectable to other components (through communication interface) to form
more sizeable entities.

Components consist of following standalone parts (by reason of incremental
development):

● specification – describes, what component provides,

● implementation (source code) – ensures operation of specified properties,

● executable code (binary files, libraries).

Granularity of component (Figure 3) should be appropriate. In case of high
granularity, the system is too complex. On the contrary – in case of low
granularity (high generality) the system gets to the boundaries of reusability [22].

Figure 3
The Component Granularity

2.4 Current Problems and Our Motivation
Most of the current IS are deployed more-or-less only in binary form (with the
exception of the several types of different auxiliary files and parts such as XML
files, database files, etc.). However, the architectures of information systems stay
transparent for their users and they’re visible only for IS designers (by SOA,
MDA and CBA) [2].

The design of IS (by means of different types of diagrams, formal or semi-formal
notations) is separated from implementation parts of IS (for example source codes,
system documentation, etc.). Maintenance of these two factors can be difficult by
large and complicated IS.

Last but not least, in the company producing the IS, the documentation of the
design process is usually not synchronized with the implementation
documentation. This fact has consequences in case of later modifications of the IS
- additional effort is needed by employees of the company to study the IS analysis,
design and implementation. The similar situation occurs, when some analyst,

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 354

designer or developer, which collaborated on the IS development, left the
company. To sum up, the customer simply depends on supply company when
some changes in IS are needed.

3 Agents
Utilization of knowledge from agent technologies in ODA allows enhancement of
system's quality (e.g. ensuring of security, response improvement). According to
[3] if the entity is to be called agent, it should be:

• Autonomous - capable of acting without direct external intervention. Agent

 should have a degree of control over its internal state.

• Interactive - communicating with the environment using receptors and actuators.

• Learning - actions based on its experiences.

Different, but semantically similar descriptions of agent systems can be found in
[3].

3.1 Software Agents
A software agent is a software entity that possesses an independent thread of
execution and has a set of goals or tasks to complete, combined with an internal
set of plans that are aimed at achieving these goals. The independent thread of
execution means that the agent determines when to perform tasks based upon
observing its ‘environment’ [1].

To the important properties of software agent belong:

• it gets nearer to the abstraction of actor than objects,

• it is higher-level component abstraction of modeling system,

• for its design and implementation it is possible to use object-oriented approach,
or design patterns respectively.

The additional tiers of behavior such as learning, code mobility, etc. could be
added in a straightforward way to the systems implemented with agent
technology.

3.2 Artificial Intelligence Agents
Artificial Intelligence agent (AI agent) has compared to SW agent several extra
properties, especially AI agent should be:

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 355 ░

• Adaptive - capable of responding to other agents and/or its environment to some
degree. More advanced forms of adaptation permit an agent to modify its behavior
based on its experience.

• Intelligent - state is formalized by knowledge (i.e., beliefs, goals, plans,
assumptions) and interacts with other agents using symbolic language.

• Rational - able to choose an action based on internal goals and the knowledge
that a particular action will bring it closer to its goals.

• Transparent and accountable - must be transparent when required, yet must
provide a log of its activities upon demand.

From extensive list of AI agents properties mentioned in [3], some meaningful for
ODA are: Temporally continuous, Proactive, Character, Unpredictable (to some
degree), Rugged, Trustworthy, Coordinative.

4 Proposed Architecture
As was outlined in introduction, every information system designed in context of
ODA consists of two main parts:

• Application Logic (AL)

• System Design (SD)

Under the term application logic (AL) we intend specific group of services offered
by particular IS, where the service is executable part of information system,
covering exactly one functionality of system. The service takes input data from
user of IS (or application representing the user) and produces output data
(principle similar to web services [9], but unlike web services, AL is located in
local IS services repository1). Every such service is responsible for designated area
(e.g. Various types of database operations, calculations, security controls, data
processing, etc.) and consists of interconnected and mutually interacting
components called binary micro-components (BMC). BMC's have the form of
individual executable unit (dynamically linked library satisfying defined
conditions, ...) representing functionality fragment. This standalone unit (BMC)
can be one class2, implementing specified interface for example. Common
interface allows communication with environment (ODA and other BMC's and
services in ODA) and also allows the class to be the building block of services and
finally running the service.

1 Of course, services can be placed in distributed environment – arbitrarily in Internet.
2 If considered object oriented paradigm.

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 356

Design of IS comprises of three separated sub-designs, which have the form of
several diagram types. The first one, Application Logic Design – describes AL.
The second one – Security design – designs security aspects – associating user
roles with individual services in AL. The third sub-design describes organization
structure (hierarchy) of respective services (based on types of service
functionality) – Service Hierarchy Diagram. User-designer thus has the possibility
of extracting systems design in case of required change. After design extraction,
specific integrated development environment (IDE for modifications of design in
ODA) can be used to apply required changes – even without breaking of IS's
execution and disconnection of users (no consultations with previous designers of
system are necessary, because AI agent manages relevant changes). Security
considerations of runtime environment and all other security concerns are the
responsibility of security manager represented by software agent (SW agent). On
the other hand, AI agent's task is to tune-up performance and efficiency for users
of IS. It's work includes profiling and setting priorities on behalf of users.

‘Design Provider’ component provides system's design to designer-user through
integrated development environment (which also allows modifications of IS for
authorized users). ‘Agent layer’ component takes care of management of AI
agents, namely it embraces creation, collaboration environment and destroying of
AI agents. Component named ‘Remoting Provider’ mediates communication
between remote information systems (based on ODA) through heterogenous
environment as networking environment or inter-process channels. So this
component is important for communication between run-time environment (RE)
and service users, and in the similar way for information interchange between
potential user-designer (represented for runtime environment by IDE) and RE.
Services of the IS can also be used by remote IS – if it has adequate access rights
of course. ‘Security manager’ is the component constituted by software agent
administering security concerns, it manages public keys for encrypted
communication, or protects from unauthorized accesses for example.

Since ODA strictly separates functionality of system from presentation logic,
front-end client can be represented by Windows (or other operating system)
application, web application, web service, etc. Only important requirement for
client is to have proper interface for connecting and using of application
functionality. Through this standardized interface, client is able to utilize all
services of ODA and respective IS (services of binary micro-components, services
of authentication, secure connection, ...). ‘Information System Manager’
component serves as a manager of ‘IS repository’, activities it incorporates
include adding/removing of IS to/from repository and other actions for
administration of all stored IS. IS repository is the storage place, where all
information systems (their BMC's, application logic, documentation, ...) for local
machine are warehoused (in ODA). ‘Service Provider’ executes requested
services, according to calls from clients or calls from other services in the same
service hierarchy as executed service is. Component ‘Run-time Controller’ is the

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 357 ░

boss of runtime-environment. It loads RE and its components when started, shuts
down all environment when stopped. This component also activates and
deactivates other components of RE and thereby rules operation of all IS kept in
IS repository. Figure 4 shows main parts of ODA.

Figure 4
Open Design Architecture

Meaning of arrows in RE is as follows: All data incoming to RE (let's call it
messages) from outside environment pass through component ‘Remoting
Provider’. Messages are filtered, verified and validated using component
afterwards ‘Security Manager’. This leads messages to ‘Service Provider’
component, executing particular service of application logic. Results of service
execution are sent through ‘Security Manager’ and ‘Remoting Provider’ back to
client. Analogous process is observed by adding/removing of information system,
or accessing of some service's design, except that components ‘Information
Systems Manager’, or ‘Design Provider’ are used instead of ‘Service Provider’.

If change in IS design (and thereby in whole structure of IS) is requested, current
design of IS is sent to designer-user through ‘Design Provider’. After potential
modifications by designer, the design is sent back to ‘Design Provider’ (through
‘Remoting Provider’ and ‘Security Manager’), where modified design is
transcribed to original design of IS. This change can be accomplished in running
IS without disconnection of IS users. Changes in running system can bring many
problems, like security risks, loss of data or inefficiency of system. This is the
point, where properties of agents show handy. As was mentioned, software agent
is responsible for security of whole RE. Software agent was chosen because
determinism of software agents for such critical issues like security is better than
non-determinism of AI agent. On the other hand, AI agent can show even better
properties, at the cost of occasional inaccuracies (non-determinism). AI agent was
therefore chosen to optimize speed, performance and availability of running

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 358

services in multi-user environment. Information, which is used for this purpose is
called ‘user profile’ of service consumers (physical clients or external IS). AI
agent thus stores evidence of each user including:

• number and times of log-on actions of client for particular IS

• sequence of services used by client after log-on

• periodicity of particular service usage by client

• time of execution for called services

• priorities of service consumers

These factors together (maybe more will be added later) comprise ‘user profile’,
upon which AI agent decides on reallocating of resources, or even suspending
some users for minor time intervals. Each role of service consumer is assigned its
priority, expressed as number. As this priority is part of user profile in RE, AI
agent considers this priority and precedence of high priority roles is ensured. This
way, AI agent can improve overall performance of IS. Seeing that AI agent is not
fully deterministic, it doesn't control execution directly, but instead it creates
recommendations and sends them to ‘Service Provider’ through ‘Security
Manager’. ‘Service Provider’ decides whether AI agent's recommendations are not
suspicious, and decides whether to accept them. If ‘Service Provider’ receives
suspicious recommendations (e.g. it receives none or distorted ones), it means that
AI agent failed and safe mode of operation is activated to ensure services
availability. One of such ‘safe’ algorithms used temporarily for IS is FIFO (in
other words: first come, first served).

According to presented ODA principles, ODA combines properties of SOA [9] –
regarding services, MDA – regarding design of IS independent from target
platform of IS and CBA – services consist of binary micro-components.

5 Future Work
Next phase of work on successful realization of ODA will be directed at
specification of essential diagrams of ‘System Design’ part and their precise
semantics. The work will also be aimed at AI agent and software agent
specification.

One of last parts, that we are able to identify now, will be implementation of
mentioned components of runtime execution environment together with security
mechanisms ensuring secure IS operation in context of ODA.

Last phase will be design and implementation of prototype IS, where expected
properties of architecture will be checked and supposedly demonstrated. The goal

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 359 ░

of the prototype will be to convey integrated view of possibilities offered by
ODA.

Conclusions

Designing and implementing of flexible, secure and easy scalable information
systems isn’t simple process. We must solve a lot of problems such as security,
scalability, performance, etc. These challenges can require invariably knowledge
from artificial intelligence area (with knowledge of system architectures in IT
area).

We presented a new architecture for information system and its runtime
environment. Information systems will provide services that are characterized
with consistent modularity, which beside others separates functionality from
presentation logic.

To the potential advantages of such architecture we anticipate quick development,
simplified modification of individual IS services.

To achieve introduced features the information system will consist (except its own
functionality, which is generally in binary form) also from meta-information
called ‘System Design’, which can be edited in order to effectively modify its
structure and behavior.

Acknowledgement

This work is supported by this project:

VEGA 1/2176/05 – Technologies for Agent-based and Component-based
Distributed Systems Lifecycle Support

References

[1] What is software agent? Thales, Research & Technology (UK) Ltd

[2] Belicak M., Paralič M., Havlice Z.: Distributed Service-Oriented
Information Systems with Open Architecture, in Proceedings of Electronic
Computers and Informatics ECI 2006, The Seventh International Scientific
Conference, Košice – Herľany, Slovakia, September 20-22 2006, pp. 8-12

[3] Object Management Group, Agent Platform Special Interest Group: Agent
Technology (Green Paper), OMG Document agent/00-09-01, Version 1.0,
September 1, 2000

[4] Lüders F: Use of Component-Based Software Architectures in Industrial
Control Systems, Mälardalen University Licentiate Thesis No. 18,
Department of Computer Science and Engineering, Mälardalen Univ., 2003

[5] Object Management Group, OMG Model Driven Architecture, May 24,
2006, http://www.omg.org/mda

M. Beličák

Open Design Architecture and Artificial Intelligence Agent Application in Information

Systems Practice

 ░ 360

[6] Sriraman B., Radhakrishnan R.: Component-based Architecture
Supplementing SOA, Sun Microsystems, March 2005

[7] ZapThink, LLC, Solving the IT Impasse with Service Orientation,
Whitepaper, ID: WP-0110, March 2003, http://www.zapthink.com

[8] Tsai W. T., Fan Ch., Chen Y., Paul R., Chung J.-Y.: Architecture
Classification for SOA-based Applications, in Proc. of ISORC'06, April
2006, pp. 295-302

[9] Dragoni N., Gaspari M.: Integrating Agent Communication Languages in
Open Services Architectures, Technical Report UBLCS-2003-12,
Department of Computer Science, University of Bologna, Italy, 2003

[10] Erl T.: Service-Oriented Architecture - Concepts, Technology, and Design,
Prentice Hall Professional Technical Reference, July 2005

[11] Agrawal R., Bayardo R. J. Jr., Gruhl D., Papadimitriou S: Vinci: A
Service-Oriented Architecture for Rapid Development of Web
Applications, in Proc. of the 10th International Conference on WWW, 2001

[12] Taylor K., Austin T., Cameron M.: Charging for Information Services in
Service-Oriented Architectures, in Proc. of the IEEE EEE05 international
workshop on Business services networks BSN '05, March 2005

[13] Cuomo G.: Databases and Service-oriented Architectures: IBM SOA “on
the edge“, in Proc. of the ACM SIGMOD Management of data, June 2005

[14] Alonso G., Casati F.: Web Services and Service-Oriented Architectures,
ICDE (archive), in Proceedings of the 21st International Conference on
Data Engineering (ICDE'05), Volume 00, 2005, p. 1147

[15] Papazoglou M. P., Georgakopoulos D., Guest Editors: Introduction to
Service-oriented Computing. Communications of the ACM, October 2003,
Vol. 46, pp. 24-28

[16] O'Toole A.: Web Service-Oriented Architecture – The Best Solution to
Business Integration, IT Management News, 2003 (SecurityProNews,
August 15, 2003)

[17] Nunes Rodrigues G.: A Model Driven Approach for Software Systems
Reliability, in Proceedings of the 26th International Conference on
Software Engineering (ICSE’04), May 2004, pp. 30-32

[18] Sheng Q. Z., Benatallah B.: ContextUML: A UML-Based Modeling
Language for Model-Driven Development of Context-Aware Web
Services, In Proc. of the (ICMB’05), July 2005, pp. 206-212

[19] Hemme-Unger K., Flor T., Vögler G.: MDA Development Approach for
Pervasive Computing, OOPSLA’03, Anaheim, CA, USA, 18th ACM
SIGPLAN conf. on OOP, systems, languages, and app., Oct. 26-30, 2003

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 361 ░

[20] Abd-Ali J., El Guemhioui K.: An MDA-Oriented .NET Metamodel, in
Proc. of the 9th IEEE Int. EDOC E. Computing Conf., 9/2005 pp. 142-156

[21] Kanisová H., Müller M.: UML srozumitelně, Computer Press a.s., 635 00
Brno, CZ, 2004, pp.145-152

[22] Component-based Architecture And Modeling and Simulation, Keane,
NDIA, In Proc. of 5th Simulation-Based Acquisition/Advanced Systems
Engineering Environment Conf., June 24-27, 2002

