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Abstract: In this paper, the use of evolutionary computation for feedforward neural 
network learning is discussed. The aim is to combine benefits of evolutionary and gradient 
learning into two methods: BP/ES and ES/LMS. We compared experimental results 
obtained on XOR data by back-propagation algorithm, evolution strategies, and combined 
approach. 
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1 Introduction 

There are several different approaches with various properties, which can be used 
for neural network learning [1]. Knowing and using these properties, potentially 
avoiding them, is necessary for practical problem solving. However, not every 
method is applicable to solve every problem. A method, which is appropriate to be 
used for some problems, may not have expected results for another class of tasks. 

In this paper there is an attempt to compare two completely different approaches – 
back-propagation of error algorithm (BP) and evolution strategies (ESs) – and to 
deduce some pieces of knowledge which can facilitate combining their 
advantages. The emphasis is placed on ESs – a class of evolutionary computation 
methods that use normally distributed mutations, recombination, deterministic 
selection of offspring individuals, and self-adaptation of strategy parameters [2]. 
The aim is to find an optimal or a near-optimal set of weights for the neural 
network with fixed architecture. Considering strong computational requirements, 
relatively ‘elementary’ data – notably the XOR problem – are used in this paper. 

EANNs are a special class of artificial neural networks, in which evolution is 
another fundamental form of adaptation in addition to learning [1]. As the most 
considerable possibilities of evolutionary computation application in neural 
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network domain seems to be the stochastic optimization, which deals with 4 main 
problems [3], [1]. 

• network topology optimization (evolution of architectures; especially GAs) 

• network weights optimization (evolution of connection weights, especially 
GAs and simulated annealing) 

• both network topology and weights optimization  

• learning rules extraction (evolution of learning rules; GAs) 

Since nearly exclusive using genetic algorithms for weights optimization 
(formulated as minimization of an error function), this paper explores application 
possibilities of a bit different method – multimembered evolution strategy 
( ) ES−+ λμ  and ( ) ES−λμ, . 

1.1 Evolution Strategies (ESs) 

Evolution Strategies are algorithms which imitate the principles of natural 
(organic) evolution. They were developed as methods for numerical optimization 
([4], [5]). Numerical optimization problem can be described in following way: 

If ∅≠ℜ→ℜ⊆ MMf n ,:  is an objective function (i.e. function, which is going 

to be optimized), then optimization problem is to find a vector Mx ∈*  such that 

( ) ( ) **: fxfxfMx =≥∈∀  

where *f  is a global minimum, ( ) }},...,1{0|{ qjxgxM j
n ∈∀≥ℜ∈=  is the set 

of feasible points and ℜ→ℜn
jg :  are inequality constraints. 

The ‘2 main qualities’, which distinguish ES from other stochastic techniques, are 
real-valued representation1 and self-adaptation2. ‘Classical’ evolution strategy can 
be implemented in the following way [6]: 

1 Generate the initial population of μ individuals 

2 Evaluate the fitness value for each individual of the population 

3 Create λ offspring 

4 Evaluate the fitness of each offspring 

                                                           
1  E.g. Bäck ([2]) says, that for continuous parameter optimization problems the  binary 

search space representation might make the search more difficult. 
2  The main purpose behind the self-adaptation is to allow the ‘strategic’ (control) 

parameters to self-adapt (so we can search the space of solutions and strategy 
parameters in parallel). 
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5 Sort offspring (or parents and offspring) and select μ best individuals 
to be parents of the next generation 

6 Stop if stopping criterion is satisfied; otherwise go to the step 3 

In the context of evolution strategies can be distinguished: 

• ( ) ES−+11  - so-called ‘two-membered’ strategy, where offspring 
competes with its parent and better of both individuals then serves as the 
ancestor of the following generation 

• ( ) ES−+1μ  - where μ parents can participate in the generation of one 
offspring individual 

• ( ) ES−+ λμ  - where μ parents produce λ offspring and the selection 
process selects a new population of μ individuals from (μ + λ) set 

• ( ) ES−λμ,  - where μ parents produce λ offspring and the selection 
process selects a new population from the set of λ offspring only 

In the following text, the multimembered (e.g. population size > 1) ES will be 
considered. 

1.1.1 Uncorrelated Mutations in ESs 

The genetic representation of individual can be described as follows: 

( ) ( ) ( )( )nnxx σσ ,...,,...,, 11=σx , 

where x  is optimized real-valued vector and σ  is a vector of standard deviations. 

The operators in multimembered ESs incorporate two-level learning – also 
‘strategic’ (control) parameter σ  undergoes evolution process. 

Crossover operator can be implemented either as discrete crossover (for vector x ), 
where each offspring’s component comes from the first or second parent with 
identical probability or as intermediate crossover (for standard deviations σ ), 
where offspring becomes a linear combination of its parents. 

Mutation operator works as follows: 

( )( )0,0exp. σΔ=′ Nσσ  

( )σxx ′+=′ ,0N , 

where ( )0,0 σΔN  is random Gaussian number with a mean of zero and constant 

standard deviation3 0σΔ . 

                                                           
3  0σΔ  is a parameter of the method in this case. 
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1.1.2 Correlated Mutations in ESs 

The main aim of establishing correlated mutation is to improve convergence rate 
of ESs [4]. The individual is very similar to previous version. The first vector is 
optimized real-valued one; the second vector is formed by responding standard 
deviations (they determine how much the optimized vector values will be 
changed). The new one is a vector of rotation angles. They affect the mutation 
hyperellipsoid’s main axes inclination to find ‘right’ (preferred) direction of the 
search. 

 
Figure 1 

Mutations used in ESs (only one standard deviation; vector of standard deviations; vector of standard 
deviations and rotation angles) 

The individual is now represented as a triple of vectors. The genetic representation 
(in the most general case) can be described as follows: 

( ) ( ) ( ) ( )( )( )2/1,...,1,,...1,,...,1,, −= nnnnxx αασσασx  

where x is optimized real-valued vector, σ  is a vector of standard deviations 
(dedicated iσ  for each ix ) and α  is a vector of rotation angles. 

In this version both operators, e.g. crossover and mutation, were used again. Also 
different types of crossover for different vectors were considered. 

Crossover operator works analogically as in previous case (discrete crossover for 
vector x  and intermediate crossover for standard deviations σ  and rotation 
angles α ). 

Mutation is applied in following steps: 

1 mutation of standard deviations 

( ) ( )( )1,0.1,0.exp. 0 iii NN ττσσ +=′ 4 

2 subsequently is applied a mutation of covariance angles 

                                                           
4  The values for τ0 and τ can be found in the appropriate literature, e.g. [7], [8]. 
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( )1,0. jjj Nβαα +=′ , 

where rado50873.0 ==β  

3 then ix′Δ  values are computed 

( )ii Nx σ ′=Δ ,0*  

4 now successive rotations are being calculated: 

( ) ( ) ( )**
2

*
1

1

1

1
21 ,...,,.,...,, nij

n

ij

n

i
n xxxRxxx ΔΔΔ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∏∏=′Δ′Δ′Δ
+=

−

=
α  

5 finally, the new x  values are computed 

iii xxx ′Δ+=′  

2 Combinations of Error – Backpropagation 
Algorithm (BP) and Evolution Strategies (ESs) 

The main aim of ESs and BP combinations is to raise the full advantages of both 
considered methods – not so high computational requirements, typical for gradient 
methods, and high ‘robustness’ typical for evolutionary computation. In the 
designed methods the direct encoding scheme is used – each connection is 
represented directly by its real-valued representation. 

2.1 BP/ES Algorithm 

The main idea of this approach is to learn neural network output layer weights and 
thresholds with evolution strategy and the other layers with gradient method. The 
main idea was to investigate the significance of output layer parameters impact on 
learning properties, and also was important attempt to reduce computational 
requirements of ES. One cycle of BP/ES algorithm can be described: 

1 Run ESs computing the fitness over all examples in the training set on 
the weights from output layer. 

2 Decode the best individual found above into weights in output layer. 

3 Compute weights changes of output neurons and update (only) the hidden 
layer(s) weights iteratively for all examples in the training set. 



P. Maliňák et al. 

Combinations of Gradient and Evolutionary Methods for Neural Network Weights 

Adaptation 

 ░ 412 

2.2 ES/LMS5 Algorithm 

ES/LMS combination works analogically as one above. In this case output layer 
weights and thresholds are changed by LMS and the other layers ESs. 

 
Figure 2 

BP/ES algorithm (output layer weights and 
threshold are changed by ES, the other layers by 

gradient method) 

 
Figure 3 

ES/LMS algorithm (output layer weights and 
thresholds are changed by LMS, the other layers 

by ES) 

One cycle of ES/LMS algorithm can be described as follows: 

1 Run ESs computing the fitness over all examples in the training set on 
the weights from hidden layer(s). 

2 Decode the best individual found above into weights in hidden layer(s). 

3 Compute weights changes of output neurons and update output layer 
weights iteratively for all examples in the training set. 

3 Experiments 

As mentioned above, main experiments were conducted on XOR data 
(classification of Boolean XOR function), due to their ‘simplicity’ and not so high 
computation requirements. Some illustrative experiments were conducted also on 
‘circle’ data (classification of the points inside and outside the circle). 

Feedforward neural network with one hidden layer in the experiments was used. 
There were 2 neurons in input layer, 3 neurons in first hidden layer and 1 neuron 
in output layer (so 2-3-1 topology was used). Parameter α (which determines the 
slop of transfer function) was equal to 1.0 and bias was equal to -1.0. In the 
beginning network weights were initialized from the interval <-0.5; 0.5>. 

                                                           
5  LMS – Least Mean Square method 
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3.1 Back-Propagation of Error Algorithm Performance 

First of all, the experiments with BP were conducted. Learning process was 
stopped, when error (mean square error between target and actual outputs 
averaged over all examples) was smaller than 0.01 or iterations count was greater 
then 20 000. Learning rate was 0.1, 0.2, 0.5, 0.8, 1.5, 3.0, 6.0, 20.0 and for each 
value 10 program runs were done. 

 
Figure 4 

Visualisation of the network response for XOR data ( 8.0=γ , iterations 1000, 1200, 1400 and 1600) 

In the tests, the well-known fact of BP algorithm sensitivity to the learning 
parameter was confirmed. Smaller learning rate implies longer program runs. 
However, too great values of this parameter can cause instability of system during 
the learning process. 

γ  Avg. iter. count Avg. error Avg. time (s) 

0.1 15082.83 0.009999 4.474 
0.2 5576,667 0,009996 2.13 
0.5 2288,667 0,009991 0.928 
0.8 1472.000 0,009988 0.526 
1.5 719,3333 0,009985 0.324 

Table 1 
Some results obtained by BP for different γ values 

3.2 Evolution Strategies without Covariances 

The experiments were conducted on both ‘comma’ and ‘plus’ versions 
( 100;15 == λμ ) of multimembered strategies. In the beginning weights were 
initialized from <-0.5; 0.5>; during the evolution they could be from <-10; 10>. 
Minimum sigma value during the evolution process was 0.01. Evolution was 
stopped, when training error was smaller than 0.01 or when generations count was 
greater than 1000. 

As mentioned above, the individual in ESs without covariances is made of two 
vectors. The first one consists of evolved network weights and thresholds and the 
second one is formed by vector of responding standard deviations used for 
mutation operation. In this case, the impact of 0σΔ  changes (0.1, 0.2, 0.5, 0.8, 
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1.5, 3.0, 6.0, 20.0, and for each 10 program runs) was investigated. The aim was to 
find optimal value of 0σΔ  and later apply this value in BP/ES and ES/LMS 
combinations. 

0σΔ  Avg. gener. count Avg. err. Avg. time 

0.1 114.5714 0.009442 0.53 
0.2 57.42857 0.008631 0.265714 
0.5 37.0 0.005506 0.187143 

Table 2 
Results obtained by (15, 100) – ES (15 parents produce 100 offspring; parents necessarily die) 

0σΔ  greater than 0.5 makes the strategy ineffective – so 0.8, 1.5, …, 20.0 cases 
are not shown in the table. 

0σΔ  Avg. gener. count Avg. err. Avg. time 

0.1 100,8571 0,009341 0,477143 
0.2 55.0 0,008597 0,268571 
0.5 32,71429 0,008098 0,168571 
0.8 51,28571 0,005724 0,261429 
1.5 229,2857 0,004927 13,40571 

Table 3 
Results obtained by (15 + 100) – ES (15 parents produce 100 offspring; parents don’t die necessarily) 

Results, we got, are quite comparable with results obtained by BP algorithm when 
‘correct’ parameter settings are used. 

3.3 Evolution Strategies with Covariances 

In this version, both vectors mentioned above remain unchanged. The only new 
one is the vector of rotation angles. Sigma values were initialized from <0.01; 
5.5>, minimum sigma value during the evolution process was 0.01. 

 
Figure 5 

Visualisation of the network response for xor data during (15, 100) – ES (generations 5, 10, 17) 

Obtained results were consonant with expectations. The covariance version of ES 
works better but a bit slower than ESs without covariances. 
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3.4 BP/ES Algorithm 

Due to need of comparability, settings used in the experiments with BP/ES version 
were identical as those used in experiments described above. One BP/ES cycle 
consisted of 20 ES generations and 50 BP iterations; maximal count of ‘combined’ 
cycles was 200. For each γ  value 10 program runs were done. 

γ  Avg. iter. c. Avg. err. Last cycle (G/I) Avg. time 
0.1 43.2 0.009996 20/29.8 2.31 
0.2 31.1 0.009993 20/26.3 1.601 
0.5 13.8 0.009978 16.1/18.6 0.725 
0.8 7.9 0.009955 18.1/23.4 0.426 
1.5 6.8 0.009726 10.2/7.7 0.398 
3.0 4.4 0.008373 13.3/5.1 0.22 
6.0 5.6 0.007857 6.4/1.0 0.276 
20.0 10.1 0.007895 12.6/1.3 0.522 

Table 4 
Results of BP/ES – COMMA 

 
Figure 6 

Visualisation of the network response during BP/ES – COMMA, iterations 2, 4 and 6, γ  = 0.8 

Analogical tests were done for PLUS strategy: 

γ  Avg. iter. c. Avg. err. Last cycle (G/I) Avg. time 
0.1 38.88889 0.009996 20/24.2 2.051 
0.2 17.7 0.009993 20/27.6 0.954 
0.5 9.7 0.00998 20/27.1 0.532 
0.8 9.4 0.009953 18.2/15 0.512 
1.5 4.6 0.009682 13.2/5.3 0.235 
3.0 3.3 0.00884 12.6/13.2 0.169 
6.0 3.2 0.007629 13/8.7 0.159 

20.0 11.5 0.007673 13.1/2.8 0.625 

Table 5 
Results for BP/ES – PLUS 
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Comparison between Table 4 and Table 5 shows, that PLUS strategy overcomes 
the COMMA variant nearly for all γ  values. In general, we can say that ‘tuning’ 
function of BP algorithm, due to great error signals propagated backward through 
the network, probably wasn’t effective. 

3.5 ES/LMS Algorithm 

The settings used in this case were the same as settings used in BP/ES 
combination: One ES/LMS cycle consisted from 20 ES generations and 50 BP 
iterations; maximal count of ‘combined’ cycles was 200. For each γ  value 10 
program runs were done. 

γ  Avg. iter. 
c. 

Avg. err. Last cycle (G/I) Avg. time 

0.1 67 0.009998 20/22.6 4.089 
0.2 38.9 0.009996 20/21.4 2.557 
0.5 13.6 0.00999 20/24.9 0.861 
0.8 7.7 0.009984 20/18.1 0.48 
1.5 6.7 0.009969 20/24.8 0.423 
3.0 5.1 0.009969 20/25.9 0.33 
6.0 1.7 0.009719 16.2/35.9 0.104 

20.0 1.9 0.006088 20/11.1 0.121 

Table 6 
Results of ES – COMMA/LMS 

γ  Avg. iter. c. Avg. err. Last cycle (G/I) Avg. time 
0.1 55.7 0.009998 20/32.6 3.554 
0.2 31.4 0.009996 20/25.9 1.965 
0.5 10.7 0.009987 20/29.4 0.685 
0.8 7.5 0.009979 20/32.1 0.484 
1.5 4.5 0.00997 20/29.2 0.291 
3.0 3.6 0.009942 18.8/26 0.229 
6.0 1.3 0.009711 18/34.6 0.088 
20.0 1.4 0.00677 20/7.1 0.095 

Table 7 
Results of ES – PLUS/LMS 
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Figure 7 

ES – PLUS/LMS. Algorithm was complete already after two combined cycles 

The obtained results show PLUS strategy better than COMMA again. However, 
this situation is probably caused by ‘simplicity’ of the XOR data. In this case the 
‘tuning’ function of BP algorithm arose – ES (hidden layer) was able to quickly 
provide the primary separation of the input space, so desirable network 
performance can be easy ‘tuned’ by BP. 

3.6 Experiments with the ‘Circle’ Data 

The main purpose of these experiments was not to investigate and analyze the 
possibilities of considered algorithms, but present their outcomes also from other 
than XOR data – they can be considered as illustrative. 

In the experiments were used parent population with 10 individuals and offspring 
population with 200 individuals. One cycle consisted from 20 ES generations and 
40 BP iterations; maximal count of ‘combined’ cycles was 30. 

Iter. BP/ES ES/LMS Iter. BP/ES ES/LMS 
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Table 8 
Visualisation of the network response 

The results obtained from considered experiments in essence confirmed outcomes 
from XOR problem – the ES/LMS combination seems to be a bit better than 
BP/ES. 
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Conclusions 

The main aim of conducted experiments was to implement gradient, evolutionary 
and ‘combined’ neural network learning approach and conduct experiments and 
comparisons on XOR data using these methods. For this purpose subsequent 
methods were implemented: BP/ES and ES/LMS, back-propagation of error 
algorithm and multimembered evolution strategies with/without covariances. 

Evolutionary strategies are in their both versions – with or without covariance 
angles (this version is better, but rather smaller) – very powerful. They don’t 
suffer from a convergence problem, although they can be extremely 
computationally and time consuming. This was the purpose for designing BP/ES 
and ES/LMS algorithms, which in several cases in our experiments even overcame 
BP algorithm. 

It is also important to note that EC methods aren’t designed to ‘compete’ with BP, 
but rather for use in situations, when other (gradient) methods aren’t able to deal 
with. We can say, that efficient combination of ES and gradient methods 
advantages (not so high computational requirements of BP and ‘local extreme trap 
resistance’ of ES) can lead up to more efficient solving of many practical 
problems in different fields of study. Certainly, experiments on “more 
complicated” data would be more interesting. 
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