
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 477 ░

Categorical Type Analysis for Parsing Algebras

Daniel Mihályi, Valerie Novitzká, Viliam Slodičák
Department of Computers and Informatics
Technical University Košice
Letná 9, 042 10 Košice, Slovakia

Abstract: Solving the problems by computers we always start with formulation of their
theoretical foundations. We use necessary mathematical theories and reason in them to
obtain expected results. In this contribution we assume a theoretical description of
programming process as logical reasoning over axiomatized theories. We consider
intuitionistic logical reasoning over type theory of solved problem. We formulate type
theory in categorical terms and construct its model as a functor. We use type automata for
constructing a mechanism for type checking and formulate a relation with type theory as a
special mapping that generate to every well-formed typed term of our type theory a typed
automaton recognizing it.

Keywords: type theory, category theory, typed automata

1 Introduction

The aim of our research is the theoretical description of problem solving process
in which we would like to use computers. Computers execute programs that can
be shortly characterized as data structures and algorithms. Data structures have
always some types therefore we can formulate a type theory for a given solved
problem. Because types can be complex structures, we use for them cartesian
closed category. We consider computations in programs as logical reasoning in an
intuitionistic logical system over corresponding type theory in the framework of
some axiomatized mathematical theories. Curry-Howard correspondence [3] can
help us in our considerations, because types correspond to propositions and
computations in term calculus correspond to mappings between propositions, i.e.
proofs.

In this contribution we formulate a type theory over a many-typed signature of a
given solved problem and we enclose it into a classifying category. Then we
define a model of type theory as a functor into cartesian closed category contaning
carrier sets, i.e. type representations as objects. There are many approaches that

D. Mihályi et al.

Categorical Type Analysis for Parsing Algebras

 ░ 478

use another representation for type theory, e.g. in [8,9] but they are more
pragmatical than our theoretical approach.

Typed terms can be infered by typed automata and evaluation of terms can be
described by tree automata. In this contribution we consider typed automata
introduced in [4,5] used for recognition languages with structure. Our approach
differs from the origin aim of typed automata because of their availaibility for
analysing well-formedness and type-checking of terms of our type theory. Typed
automata are finite deterministic automata with the additional information. In our
approach this additional information is type and symbols of input alphabet
(variables and function symbols) bring their types into a typed automaton
recognizing given term. We can say that a term is well-formed if the appropriate
automata terminates its work and a final state is of the expected type. States in
typed automata are typed and serve for type checking of terms. Typed automata
can be depicted in the category Set of sets as objects and functions as morphisms.
This category is cartesian closed category and we construct a functor from
classifying category to Set expressing the relation between type theory and typed
automata. The existence of such functor gives us the possibility using typed
automata for type checking in later phases of program construction. Moreover,
typing states of deterministic finite automata has crucial influence on speed of
string processing and significant reduction of search space [4].

2 Type Theory and Typed Algebraic Structures

In our approach we enclose the names of types and operations on them needed for
solving problem into a well-known notion of algebraic specification, many-typed
signature. A many-typed signature Σ = (T, F) consists of a finite set T = {σ1 ,σ2

,..., σn } of basic types and a finite set F of function symbols of the following form

 f: σ1 ... σn → σn+1.

A signature morphism φ : Σ1 → Σ2 from a signature Σ1 = (T1 , F1) to a signature Σ2
= (T2 , F2) is a pair (u, (fα)), where u:T1 → T2 is a function between sets of types
and (fα) is a family of functions between corresponding function symbols where
α = ((σ1 , ..., σn), σn+1). For instance, if f: σ1 ... σn → σn+1 then

 fα (f) : u(σ1), ..., u(σn) → u(σn+1).

A signature Σ together with a set Ax of axioms formulated in some logical system
and describing properties of operations form an algebraic specification (Σ , Ax).
All signatures can be enclosed into the category Sign of signatures as objects and
signature morphisms as category morphisms.

From basic types we can form more complex Church’s types using constructors
’×’ for product types σ → τ , ’+’ for coproduct types σ + τ and ’→’ for function

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 479 ░

types σ→τ [6,7]. To introduce terms we need a countable set Var = {v1,v2
,...,w1,w2 ,..., x,y,z, ...} of term variables. Every variable has assigned exactly one
(possibly Church’s) type constructed from types of the set T. We denote by Γ =
(v1 : σ1 , ..., vn : σn) a sequence of variable declarations and call it type context. A
term t of a type τ in which can occur only variables from the type context Γ is a
sequent

 Γ ⏐⎯ t : τ .

Rules for constructing well-formed typed terms together with axioms of type
theory are in [6]. We enclose all type contexts over a signature Σ into a classifying
category Cl(Σ) that contains

• type contexts Γ = (v1 : σ1 , ..., vn : σn), Δ = (w1 : τ1 , ..., wn : τ m) as category
objects;

• terms t: Γ → Δ as category morphisms, where Γ ⏐⎯ t : τ and τ∈ Δ.

We investigate the classifying category Cl(Σ). Every its object, a type context Γ =
(v1 : σ1 , ..., vn : σn) can be considered as a single variable declaration v : σ1 × ... ×
σn of product type. Function types ensure the existence of exponent objects Γ Δ in
Cl(Σ). The empty product denoted by 1 is a terminal object of classifying
category, i.e. there exists exactly one morphism from any object of Cl(Σ) to the
object 1. Therefore we can consider that classifying category Cl(Σ) for any many-
typed signature Σ is cartesian closed category (ccc).

A model of an algebraic specification (Σ, Ax) is a Σ - algebra. To every type σ ∈T
we assign a carrier set Aσ and to every function symbol f: σ1 ... σn → σn+1 we
assign a function (operation)

 f A: Aσ1 × ... × Aσn → Aσn+1

between corresponding carrier sets. Σ - model is a Σ - algebra

 ((Aσ)σ ∈ T , (f A)f ∈ F)

whose operations satisfy axioms from Ax.

Considering models of all many-typed signatures we can construct set-based
category of algebraic models AlgMod as follows

• objects are 3-tuples (Σ , (Aσ)σ ∈ T , (f A)f ∈ F), where ((Aσ)σ ∈ T , (f A)f ∈ F) is a
model of a signature Σ;

• morphisms

(φ , (hσ)σ ∈ T): (Σ , (Aσ)σ ∈ T , (f A)f ∈ F) → (Σ’ , (A’σ)σ ∈ T , (f ’A)f ∈ F)

are pairs consisting of a signature morphism φ: Σ → Σ’ and a family of functions
hσ : Aσ → A’φ(σ) such that the diagram in Figure 1 commutes.

D. Mihályi et al.

Categorical Type Analysis for Parsing Algebras

 ░ 480

 hσ1 × ... × hσn

Aσ1 × ... × Aσn A’φ (σ1) × ... × A’φ (σn)

f A φ (f)A

 Aσn+1 A’φ(σn+1)

 hσn+1

Figure 1
Morphisms in the category AlgMod

This algebraic approach can be extended to more complex structures using
category theory. Let B be a cartesian closed category. We construct a functor M:
Cl (Σ)→ B as follows:

• to every object in Cl(Σ), a type context Γ = (v1 : σ1 , ..., vn : σ) we assign a
carrierset product

 Aσ1 × ... × Aσn in B;

• to every morphism Γ → Δ in Cl (Σ), a term Γ ⏐⎯ t: τ , t ∈ Δ we assign a
function

 λ (a1 , ... , an) . M(t[a1/ v1, ... , an / vn])

where ai ∈ Aσi ,for i = 1, ..., n are elements of corresponding carriersets, i.e. values
substituted to variables of appropriate types.

A model of a type theory described by a classifying category Cl(Σ) is a functor
M: Cl(Σ) → B defined above into a cartesian closed category that preserves
products [6]. This type theory and its semantics we used in [7] to construct logical
system and its semantics above type theory as a base category in fibrations.

3 Typed Automata

A typed automaton is a deterministic finite automaton with types. Input symbols
not only follow each other but have a type and so force the automaton to respect
some rules. Typed automaton is able to recognize not only a string of symbols
from input alphabet but to analyze its internal structure. For these purposes input
data bring some additional information that help to recognize internal structure of

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 481 ░

input string and this information is appended to states. Typed automata were
defined in [4] for grammatical inference in learning formal grammars for
unknown languages from given learning data.

In our approach we assume that the additional information appended to input
symbols is the knowledge that input symbols (terms) are typed. As input alphabet
we use typed variables, function symbols from many-typed signature and brackets
as auxiliary symbols. Opening brackets are dummy symbols for typed automata,
closing brackets inform about finishing analysis of a function symbol. Typed
automaton checks whether the input string is well-formed term, i.e. it is
constructed by term construction rules and is well-typed. For example, the input
string of the form plus)x is not well-formed term and we cannot find typed
automaton accepting it. But the input string plus(b,x), where b:boolean is a
variable of type boolean and x:integer is a variable of type integer is also not well-
formed and is not accepted by any typed automaton.

We use typed automata to analyze a construction of well-formed terms of type
system introduced in the previous section. Let Σ = (T, F) be a many-typed
signature, where T= {σ1, ...,σn} is a finite set of types and F is a family of function
symbols of the form f:σ1 ...σm → σm+1. We define the set F’ containing only
names of function symbols from signature Σ and we get as the input alphabet of
our typed automaton the set

Σ’=Σ ∪ Var ∪ F’

where Var is the set of typed variables.

Definition 1 A typed automaton TA is a 7-tuple

 TA = (Σ’, Q , q0 ,Qfinal , δ , T’, type)

where

Σ’ is an input alphabet

Q is a finite set of states

q0 is the initial state

δ: Q × Σ’ → Q is a transition (next state) function

T’= T∪ {σinit } is a set of types from Σ extended with the special type

σinit

type: Q → T’ is a typing function assigning to every state just one

type from T’

Qfinal ⊆ Q is a set of final states

D. Mihályi et al.

Categorical Type Analysis for Parsing Algebras

 ░ 482

A language L(TA) defined by the typed automaton TA is a set of all words w in
(Σ’)* such that

 δ (q0 , w) = q,

where q∈ Qfinal is a final state. We can extend the definition of typing function to
words as follows. For all subwords w∈ Prefix(L(TA)) of words recognizable by
typed automata TA

 type(w) = type (δ (q0 , w)).

Example 1 Let Σ = (T, F) be a many-typed signature, where T = {σ1, σ2, σ3, σ4,
σ5} are types and F = {f: σ1 σ4 → σ5, g: σ2 σ3 → σ4} are function symbols. Let

 x: σ1 , y: σ2 , z : σ3 ⏐⎯ f (x, g (y,z)) : σ5

be a term of type σ5 . A posible typed automaton TA analyzing well-formedness of
this term can be constructed as follows.

We define

• the input alphabet Σ’ = {x , y , z } ∪ { f , g } ∪ { (,) }

 • the set of states Q = { q1, , q2 , q3 , q4 , q5 , q6 , q7 , q8 }

 • the set of final states Qfinal = {q8 }

 • the initial state q0

 • the set of types T’ = T ∪ { σinit }

 • transition function δ : Q × Σ → Q by the equations

 δ (q1 , f() = q2 δ (q2 , x) = q3 δ (q3 , g() = q4 δ (q4 , y) = q5

 δ (q5 , z) = q6 δ (q6 ,)) = q7 δ (q7 ,)) = q8

 • and the typing function type : Q → T’ by the equations

 type (q1) = σinit type (q2) = σ1 × σ4 → σ5

 type (q3) = σ1 type (q4) = σ2 × σ3 → σ4

type (q5) = σ2 type (q6) = σ3

type (q7) = σ4 type (q8) = σ5

The typed automaton TA = (Σ’ , Q , q0 , Qfinal , δ , T’ , type) constructed above is
illustrated in Figure 1.

We note that the typed automaton in Figure 2 can be used also to analyze a term
x:σ1 ,x’: σ4 ⏐⎯ f (x, x’) : σ5 and the input symbol x’: σ4 causes that δ (q2 , x’) = q7
and type (q7) = σ4.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 483 ░

 f: :σ1×σ4→σ5

 x: σ1

 g: σ2×σ3→σ4

y :σ2

 _ :σ4 z :σ3

))

Figure 2
Typed automaton for well-formed term

4 From Type Theory to Typed Automata

Every automaton can be depicted in the category Set consisting of sets as category
objects and functions between sets as category morphisms [1]. The initial object of
the category Set is the empty set and terminal objects are singleton sets denoted by
{*}. The category Set is cartesian closed category, i.e. it has products and
exponential objects [2]. A typed automaton TA = (Σ’, Q , q0 , Qfinal , δ , T’, type)
can be depicted in Set as it is shown in Figure 3.

q4: σ2×σ3→σ4

q1 : σinit

q3 : σ1

q2:σ1×σ4→σ5

q5 : σ2

q6 : σ3 q7 : σ4 q8 : σ5

D. Mihályi et al.

Categorical Type Analysis for Parsing Algebras

 ░ 484

 {*}

 δ type

Q× Σ’ Q T’

Figure 3
Typed automaton in the category Set

Q, T’ and {*} are sets, i.e. they are the objects in Set, Q× Q is a product object and
δ, type are functions between sets, i.e. morphisms in the category Set. A terminal
object {*} denotes a domain for initializing function to the initial state q0 of TA.

Now we define how to find for every well-formed term t:τ, i.e. a category
morphism in Cl (Σ) a corresponding typed automaton. In the category Set there
always exists a set T’ = T ∪ {σinit}, where T contains all types in Γ and the type τ
∈ Δ. Similarly, because Set has as objects all sets, there exists a set Σ’ = Σ ∪ Var
∪ F’ containing all symbols occuring in t.

We get as a set Q of states the least set such that every its element has a type from
T’. Then we have also a the type function type: Q → T’ assigning to every state its
type. The initialization function { * } → Q assigns to terminal object, singleton set,
the initial state from Q. A morphism from terminal object to any object of
category provides a constant and in Set always exists such morphism.

Because Set is cartesian closed category, to any pair of objects there exists an
object, their product. From this fact it follows that Q × Σ’ is also an object in Set.
We define a function δ : Q × Σ’ that has to satisfy the following property:

 δ (q0 , t) = q and type (q) = τ .

Then we get as Qfinal a singleton set containig only the state q of type τ .

In such a manner we can always find in the category Set a typed automaton
reecognizing any well-formed term of our type theory and we have got a useful
mechanism for type analysis of terms.

Conclusion

In our contribution we formulated a type theory over solved problem in the
framework of category theory. Such type theory represented by classifying
category form a base category in fibration, a special functor that enable to
formulate typed logical system over given type theory. We defined a model of

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 485 ░

type theory as the category AlgMod of algebras. Then we investigated the
properties of finite deterministic automata and show that typed automata can help
us to analyse well-formedness of typed terms and make type checking. We
showed that to every term in type theory that is a morphism in the classifying
category we can find a type automaton recognizing this term.

We would like to follow our research with the equipment tree automata with types
and use them for describing evaluation of terms.

Acknowledgment

This work was supported by VEGA Grant No.1/2181/05: Mathematical theory of
programming and its application in the methods of stochastic programming.

References

[1] Adámek J., Trnková V.: Automata and Algebras in Categories, Kluver
Academic Publishers, Doodrecht, 1989

[2] Barr, M., Wells, Ch.: Category Theory for Computing Science. Prentice-
Hall, 1990

[3] Girard, J.-Y., Taylor P., Lafont Y.: Proofs and Types, Cambridge Univ.
Press, 1990

[4] Kermorvant Ch., Higuera C.: Learning Languages with Help, In: Proc.
International Coll. On Grammatical Inference, Vol. 2484 of Lecture Notes
in Artificial Intelligence, Springer-Verlag, 2002, pp. 161-173

[5] Kermorvant Ch., Higuera C., Dupont P.: Learning Typed Automata from
Automatically Labeled Data, Journal Électronique d'Intelligence
Artificielle, Vol. 6, 45, 2004

[6] Novitzká Valerie: Church's Types in Logical Reasoning on Programming,
Acta Electrotechnica et Informatica, Vol. 6, No. 2, 2006, Košice, pp. 27-31

[7] Novitzká Valerie, Mihályi Daniel, Slodičák Viliam: Categorical Logic over
Church's Types, Proc. 6th International Scient. Conference Electronic
Computers and Informatics ECI'2006, Košice-Herľany, September 20-22,
2006, Košice, 2006, pp. 122-127

[8] Porkoláb, Z., Zólyomi, I.: A Feature Composition Problem and a Solution
Based on C++ Template Metaprogramming, Generative and
Transformational Techniques in Software Engineering, Lecture Notes in
Computer Science, Vol. 4143, Springer-Verlag, 2006, pp. 459-470

[9] Zólyomi, I., Porkoláb, Z., Kozsik, T.: An Extension to the Subtype
Relationaship in C++ Implemented with Template Metaprogramming,
Generative Programming and Component Engineering, Lecture Notes in
Computer Science, Vol. 2830, Springer-Verlag, 2003, pp. 209-227

