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Abstract: This paper describes the control of the mobile robot (four-wheeled vehicle) on a 
slippery surface. The aim of this control is to follow the given path causing minimal errors. 
We compared two approaches of the control in this paper: inverse control (supervised 
offline learning), and control based on reinforcement learning (online learning, AGREL). 
The main focus of this work is on a recently introduced type of reinforcement learning 
algorithm AGREL [1] designed for classification. We tried to adapt it to for control tasks. 
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1 Introduction 
An advantage of approaches based on artificial neural networks, especially on 
reinforcement learning, is their ability to adapt to new and unexpected situations. 
Perhaps, one of many reasons why to study biologically plausible approaches of 
control is their adaptability as it is exemplified in [3]: A gazelle calf struggles to 
its feet minutes after being born. Half an hour later it is running at 20 miles per 
hour. 

This work is focused on such a problem. The aim of it is to implement (and 
compare it with direct inverse control) a new type of reinforcement learning 
(AGREL) in a control task and to examine its ability to control four-wheeled 
vehicle in unexpected situations such as driving on a slippery surface. This 
approach is not meant to be universal solution for difficult control problems, but 
the one of variety of tools that is required [4]. 
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  a)     b) 

Figure 1 

a)Inverse model identification of the plant 
b) Control of the plant by inverse controller 

An intelligent control was proposed by Fu in 1971 as an alternative to classical 
control applying artificial intelligence [5]. The exact definition of the intelligent 
control has not been given yet [6]. 

Intelligent control is a branch combining features of four other branches: artificial 
intelligence, control theory, computer science and operations research [7]. The 
main contribution to the intelligent control is from artificial intelligence and 
control theory. If we consider main features of these approaches we will get an 
important feature of intelligent control as mentioned in [8]: the ability to improve 
its performance in the future, based on experiential information it has gained in the 
past, through closed-loop interactions with the plant and its environment. 

One of the possible implementation of intelligent control is the use of artificial 
neural network (ANN). Such a control is also called neural control. According to 
Katic and Vukobratovic [9] neural control of mobile robots is divided into three 
approaches also known from learning ANN: 

• supervised learning, 

• unsupervised learning, 

• reinforcement learning. 

1.1 Direct Inverse Control 
The main idea of the direct inverse control is to identify the inverse model of the 
controlled plant (Figure 1a) in the way that the input of the model is the output of 
the plant and the output of the model is the input of the plant. Then we can use the 
inverse model (as is depicted in Figure 1b) in the way that the desired output is the 
input of the inverse model and its output is the input of the plant [2]. 

To identify (and control) plant we can use ANN. Training data, needed to train 
ANN, contains description of current state and a random action taken in this state. 
When training ANN, input is a state at the time t and desired state at the time t+1. 
Output is the action taken at the time t. Then, if the inverse model of the plant is a 
function, we can train ANN to take an action that leads to the desired state. 
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1.2 Attention-gated Reinforcement Learning (AGREL) 
In reinforcement learning, we do not have a desired output, as in supervised 
learning, we do not know what to do. We just have information, whether the taken 
action leads to the desired state or not (reward or penalty). Definition of 
reinforcement learning proposed by Barto and Sutton [3] claim that reinforcement 
learning is learning what to do, how to map situations to actions, so as to 
maximize a numerical reward signal, then the learner is not told which actions to 
take, but instead must discover which actions yield the most reward by trying 
them and finally any action may affect not only the immediate reward but also the 
next situation and, through that, all subsequent rewards. 

AGREL as a reinforcement learning algorithm was proposed by Roelfsema and 
Ooyen in 2005 in [1]. One of the AGREL's main feature is that, it is more 
biologically plausible than others, especially than supervised learning methods. 
Biological plausibility of AGREL is given by its reinforcement learning character, 
global error signal δ (similar to signal computed by dopamine neurons of 
midbrain) and an attentional feedback signal [1]. 

Aim of this kind of ANN (AGREL) is to speed up as well as simplify 
reinforcement learning. AGREL is a type of associative reinforcement learning 
algorithm, where we consider just spatial credit assignment, so it is learning how 
to map states to actions [3]. It is also possible to extend AGREL to the sequence 
learning (actor - critic), considering both spatial and temporal credit assignment. 

Signal from pattern in the input layer is propagated through network in the same 
way as in BP. As activation function is used logistic function (1) 

( )
iinii e

infy α−+
==

1
1

,  (1) 

where ini  is input to i-neuron and: 

∑
=

=
N

j
jiji xwin

0

. (2) 

Weight wi0 is a bias of i-neuron (x0 is equal to 1). In the output layer, there is used 
stochastic softmax rule (3) to determine the probability. According to this 
probability, by Winner Takes All (WTA) strategy, neurons have activation equal to 
0 except for winning neuron with activation equal to 1. 
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In other words, input is classified into the one of the M classes, where M is the 
number of neurons in the output layer. 
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Weights are adapted by Hebbian rule. For adaptation of weights between output 
layer and hidden layer is used equation (4). We made one change in adaptations 
rule of AGREL as well as topology of ANN. In adaptation rules, we do not 
consider feedback connections weights as in [1]. There was used just one set of 
weights for forward signal propagation as well as feedback signal propagation 
(learning). 

( )δβ fyyw jiij =Δ  (4) 

Weights between second hidden layer and first hidden layer are adapted according 
to equation (5) 

( )[ ])1( jjsjiij ywfyyw −=Δ δβ  (5) 

where s is the winning neuron in output layer. Weights between input layer and 
hidden layer are adapted according to equation (6). 
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On rewarded trials, to count delta we use 

)(rEr −=δ , (8) 

where E(r) equals Pr(yk = 1). When the trial is punished, then δ is set to -1. To 
stress unexpected trials, which are very valuable in learning, there is used f(δ) in 
adaptation equations. 

 

                                                                       (9) 

 
 

2 Design and Implementation 
All experiments were conducted in simulated mode using Open Dynamics Engine 
libraries. Task complexity was scaled by changing friction coefficient as well as 
gravity acceleration with values several times lower than the real ice friction or, on 
the other hand, gravity of Earth. For the sake of increasing complexity, there was 
also simulated fault (blocked rear wheel). The path was defined by ten points in all 
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conducted experiments. Length of the path was 1700 m. Average speed was 
around 1ms-1. Weight of the vehicle was set to 1500 kg, which is the same as the 
weight of a real car. 

ODE parameters of vehicle and environment were set as following: 

LENGTH   5.5 

WIDTH    2.5 

HEIGHT   1.0 

RADIUS   0.5 

CMASS   1500 

WMASS   10 

FMAX    50 

GRAVITY  1.8 

FRICTION ICE  0.005 

FRICTION DRY  20.0 

ERP   0.8 

CFM   0.0001 

2.1 Direct Inverse Control of Vehicle by ANN 
As mentioned above, we need to describe states and actions by measurable 
characteristic. There, due to increasing accuracy of control, we can use more than 
just desired state in inverse control. Especially in this proposal, there were used 
current and one or more desired states. Current state of the vehicle was 
represented by: 

• information whether the wheel is slipping or not, 

• velocity, 

• change of the angle of velocity, 

• the angle of rotation (yaw). 

Desired state was represented by change of the angle of velocity in time t+1 up to 
t+n. 
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Figure 2 
Architecture of control with AGREL 

Action was represented by: 

• turn of front wheels, 

• velocity, 

• brake. 

After getting inverse model of plant, it was used to control such a plant in the way 
described above. 

As a structure to represent inverse model was used feedforward neural network 
with two hidden layers and was adapted by backpropagation learning algorithm 
(BP). Input into ANN was current state (7 neurons) and as the desired state was 
used just the change of the angle of velocity in next n steps. There were x neurons 
in first hidden layer, y neurons in second hidden layer and tree neurons in output 
layer (action). 

2.2 Reinforcement Learning (AGREL) Control of Vehicle 
We designed two approaches to control vehicle. Control of the vehicle by one 
ANN. In this case we control just turn of the front wheels. Or we can control 
vehicle by two ANN when we control turn of the front wheels as well as desired 
speed of vehicle (Figure 3). 

Input (state) was represented by: 

• information whether the wheel is slipping or not, 

• the angle between vector position of the vehicle - destination and the 
velocity vector, 

• change of the angle between vector position of the vehicle - destination 
and the velocity vector, 

• the angle of rotation, 
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• change of the angle of rotation, 

• the angle between the vector of rotation vehicle and the velocity vector, 

• change of the angle between the vector of rotation of the vehicle and the 
velocity vector, 

• the angle between the vector position of the vehicle - destination and the 
vector of rotation of the vehicle, 

• velocity, 

• change of velocity, 

• action taken in t-1. 

In both cases was state described with the same parameters. On the other hand, 
when we control vehicle by one ANN, output was represented by x neurons so 
there were x possible position of steering wheel and speed was set to constant 
value. In the case of control by two ANN were used x neurons for control turn as 
well as speed. 

ANN for turn control was rewarded every action after turning the velocity vector 
to the target in all following experiments. Analogously, punished in other case. 
ANN for speed control was rewarded in the case the ANN for turn control was 
rewarded and speed increased or was punished in turn control and speed 
decreased. Punished in other case. 

2.3 Integration of Inverse Control and AGREL 
This approach includes advantages of both described approaches. In this case, 
control based on AGREL is used to accurate inverse control, as well as this 
approach is able to adapt to unexpected situations. 

There was included design of both approaches into one. AGREL was used to 
correct action taken by inverse control, so the output of AGREL was presenting 
just the correction of the action (Δx) instead of the real action (x). 

3 Experiments 

3.1 Direct Inverse Control of Vehicle 
There were conducted some experiments with different topology of ANN 
(parameters x, y and n). Experiments were compared according to the measured 
values such as the average speed, the length of trajectory and the average distance 
from given trajectory as well as subjective value. 
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Figure 3 

Inverse control of vehicle. Gray field stands for ice. 
Dashed line is prescribed trajectory while solid lines is actual path of vehicle. 

There seemed to be two different cases in conducted experiments. On the one 
hand vehicle was driving with a big distance from given trajectory where direction 
was changed (n=1 or x=15, y=10 and n=50), on the other hand, it took longer and 
there was a bigger average distance (x=45, y=30 and n=50). 

The best solution according to the time was the experiment with x=15, y=10 and 
n=50, according to the average distance experiment with x=45, y=30 and n=1 and 
according to the length of trajectory experiment with x=45, y=30 and n=50 
(Figure 4). One of the interesting results was attempt of ANN to choose action 
after which vehicle was not slipping. 

3.2 Reinforcement Learning (AGREL) 

3.2.1 XOR Problem 

First of all, we tested AGREL on benchmark XOR problem. We made some 
modifications in AGREL algorithm before all experiments were conducted. We 
replaced penalty value -1 with value varying from -0.1 up to -0.5. ANN was able 
to classify all patterns for XOR problem after 80 iteration. 

3.2.2 Control of the Vehicle by One ANN 

We used ANN with topology 16-33-13-x and value of punishment set to -0.35. 
Speed was equal to 1.0 or 1.4 and learning rate was equal to 0.2, 0.5 and 1.0 
depending on experiments. According to conducted experiments better solutions 
were that with more (5) neurons in the output layer. It is also better to use more 
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neurons due to better stability of ANN. We got better results with learning rate 
equal from 0.5 to 1.0. It was important to set the higher learning rate in order to 
decrease adaptation time. Another conclusion was that the controller (ANN - 
AGREL) was not able to control vehicle on slippery surface with higher velocity 
acceptably. 

3.2.3 Control of the Vehicle by Two ANN 

In this case, there were controlled both the turn and the speed. Punishment was set 
to   -0.65 or -0.45, learning rate was equal to 0.2, 0.5 or 1.0 and rate of weight 
change when rewarded was equal to 0.05, 0.15 or 0.45 depending on experiments. 
We got the best results with lower learning rate. It is also better to set lower 
learning rate due to better stability of ANN. In experiments with higher learning 
rate, there was lower error till weight reinitialization. 

3.2.4 Integration of Inverse Control and AGREL 

In these experiments, we used the same ANN for inverse control like in previous 
experiments and also with the same settings for AGREL, but with output suitable 
for correction of action taken by inverse control. Punishments were equal to -0.64 
or -0.45 and learning rate was equal to 0.2 or 0.4 depending on experiments. 

The best results were achieved with learning rate equal to 0.2. Generally, there 
were achieved better results then in individual approaches (compare Inv. and I+A 
in Table 1). 

Table 1 
Measured values of the best experiment of each approach of control focused on higher speed. I+A 

stands for integration of inverse control and control based on learning AGREL. 

Type Speed[ms-1] Length[m] Av. dist. E.[m] 
Inv. 1.43 1876 15.7 

AGREL 1NS 1.35 1931 15.3 
AGREL 2NS 1.26 1876 13.4 

I + A 1.45 1866 14 
I + A 0.79 1936 13.5 

3.2.5 Control of the Vehicle with a Fault 

These experiments were the most interesting as the problem, that was solved, was 
the most complex and maybe more interesting for practice than other. There was 
blocked one rear wheel as a simulation of possible fault. All parameters of control 
were set to the same values as in the best previews experiments. 

None of both individual approaches achieved satisfactory results with a fault. 
Control with AGREL was not able to deal with the fault in appropriate time and 
therefore we do not provide any results with this type of control in the Table 2. 
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Table 2 
Measured values of the experiments (vehicle with fault). I+A stands for integration of inverse control 

and control based on learning AGREL. E.n is a number of experiment, Length is a length of the 
trajectory made by vehicle in one round, Av. dist. E. is an average distance error from given  trajectory 

and Av.speed. is an average speed. 

E.n. Type Length[m] Av.  dist. E.[m] Av. speed[ms-1] 
1 Inv. - - - 
 I+A 2987 31.3 1.06 
2 Inv. 2434 20.4 0.8 
 I+A 2000 19.6 0.81 
 I+A after 5 r. 2890 12.0 0.8 
3 Inv. - - - 
 I+A 3459 46 1.1 
4 Inv. 2040 24 0.82 
 I+A 1936 13.5 0.79 

  
  a)     b) 

Figure 4 

a)Inverse control of the vehicle with fault 
b)Integration of inverse control and AGREL control of the vehicle with fault. Gray field stands for ice. 

Dashed line is prescribed trajectory while solid lines is actual path of vehicle. 

In the case of inverse control, ANN with proper settings  was able to control 
vehicle even with fault, but  only in these cases, when it drove with lower speed 
and with lower average distance error in control without fault (E.n. 2 and E.n. 4 in 
Table 2) (Figure 5a). The only one approach that satisfied all requirements was 
integration of inverse control and AGREL. As is depicted in Figure 5b, we can see 
that except the one part of trajectory at the beginning, control was very accurate. 
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Conclusions 

In conducted experiments we compared two types of control approaches: inverse 
control (supervised learning) and control based on reinforcement learning 
(AGREL). Inverse control achieved satisfactory results and also we can say that 
inverse control was better than control based only on AGREL. But on the other 
hand, results achieved by control based on AGREL were similar to these with 
inverse control. The biggest problem of AGREL is the quick rise of weights. The 
other problem is to set learning rate. If the learning rate is too small, adaptation is 
also slow, but we can store knowledge for longer time, on the other hand with 
bigger learning rate, adaptation is faster, ANN is able to store knowledge only for 
a short time and there is high probability that weights will rise. As the best control 
approach we can consider integration of both approaches, AGREL and inverse 
control. The biggest difference between integrated approach and the other was 
achieved in control of vehicle with fault, when the individual approaches did not 
reach final destination in satisfactory time and the integrated approach achieved 
results comparable with control in normal conditions. 
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