
5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 41 ░

Fault Tolerant Computer System Based on
TMR Architecture

Liberios Vokorokos, Branislav Madoš, Jan Perháč
Department of Computers and Informatics, Technical University of Košice
Letná 9, 042 00 Košice, Slovakia
Liberios.Vokorokos@tuke.sk, Branislav.Mados@tuke.sk, Jan.Perhac@tuke.sk

Abstract: Article deals with description of fault tolerant computer system based on TMR
architecture, designed on the Department of Computers and Informatics of Technical
University of Košice as part of the VEGA projects No. 1|1064|04 and 1|4071|07. Article
describes basic architecture of system and details of majority element function execution,
communication of system modules and synchronization of client‘s applications execution on
system modules.

Keywords: FTC, Fault Tolerant Computing, TMR, Triple Modular Redundancy, Static
configuration redundancy

1 Introduction

Fault tolerant systems are very important for many industry and economy
segments that are increasingly dependent on reliability of computer systems
operation. There is possibility to reach enhancement of reliability of computer
systems operation by fault tolerance implementation. System is considered as fault
tolerant in the case of proper function execution capability under conditions of
fault occurrence in hardware or error occurrence in software. There is no
possibility of fault tolerance against arbitrary type of fault or error or arbitrary
quantity of them. It is possible to use reservation of subsystems to increase fault
tolerance. It is possible to divide reserves with regard on character of reserve into
hardware, software and information reserves. In accordance with use of reserves
we can use division to static, dynamic and hybrid reserves. In accordance with
equality of reserve and reserved subsystem we can use division into configuration
and functional reservation. Most common type of reservation in the case of
functional units is static configuration redundancy with use of Triple Modular
Redundancy (TMR). TMR system consists of three identical modules, with equal
function. Output of each module is evaluated with majority element. In
accordance with this we designed architecture of fault tolerant system on TMR

L. Vokorokos et al.

Fault Tolerant Computer System Based on TMR Architecture

 ░ 42

architecture basis on the Department of Computers and Informatics of Technical
University of Košice as part of the VEGA projects No. 1|1064|04 and 1|4071|07.

2 Architecture of Designed Computer System

Designed computer system is dedicated to process client’s software applications in
C language for Windows operating system in fault tolerance mode. The term
client’s application is reserved for software programmed by user of designed
computer system with respect to conditions which are required to use system in
fault tolerance mode. The design is aimed to use Triple Modular Redundancy
(TMR) and personal computers serving as modules. Another goal is to design
architecture in the way in which applications not programmed for use of this
computer system can be easily and quickly rewritten for adaptation with as low
obligatory changes as possible. Designed architecture can operate in three
different modes – fault tolerance mode, diagnostic mode, and normal mode, in
which system cannot mask faults or to recover after fault occurrence.

Figure 1

Schema of designed system with triple modular redundancy with tripled majority element

Designed computer system uses three identical modules. Each module is realized
as a personal computer. Modules, labeled F1, F2 and F3 in Figure 1, are
performing the same algorithm of client’s application. Outputs of modules are

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 43 ░

inputs of majority element. To reach more reliable design, function of majority
element is tripled and is performed by majority elements M1, M2 and M3.
Another step for more reliable computer was made when functionality of majority
elements M1, M2 and M3 were transferred into PC modules.

Majority element. The function of majority element is to determine majority
element output from outputs of computer system modules. Output value of module
consists of 8 bits vector. Output value of majority module also comprises of 8 bits
vector.

The function of majority element is to decide which output of three modules can
be used as the output of majority element (Table 1). Equality of outputs of each
pair is considered as a vector of bits.

Comparison of modules outputs

Possible outputs of majority
element

A = B, A=C, B=C A,B,C
A=B, A≠ C, B≠ C A,B
A=C, A≠ B, C≠ B A,C
B=C, B≠ A, C≠ A B,C
A≠ B, A≠ C, B≠ C SO

Table 1
Output of majority element is dependent on outputs of modules

The value of safe output (SO), is defined by programmer of client’s application
and majority element outputs this value in case there are no two equal outputs of
modules so majority element cannot decide which of modules output can be used
as the output of majority element.

Function library. To allow client’s applications to use designed computer system it
is necessary to use library of functions, which is part of computer’s design.
Functions allows to synchronize start and performance of client’s applications
copies on each of modules of designed system, allows communication between
modules, performs majority element function on each module and produces and
writes output and diagnostic information into output and diagnostic files.

Communication between modules. Communication between each pair of modules
is performed during computer’s operation. Parallel ports of personal computers,
labeled as LPT0 and LPT1 on Figure 2, are used. Communication is important to
synchronize software applications on modules of the system and to exchange
output information between modules to perform function of majority element.

L. Vokorokos et al.

Fault Tolerant Computer System Based on TMR Architecture

 ░ 44

Figure 2

Schema of system modules interconnection

Synchronization of modules is performed when computer system is starting
client’s application. Each of modules outputs predefined information and is
waiting for the same information from another two modules of the system. In
moment when all three modules obtain information from another two modules,
modules are synchronized.

Output information is transferred from system module to another two modules of
the system, and serves as input information for majority element which function is
performed by system module. Output information of module consists of two 8 bits
vectors. First of vectors is identification stamp; second vector is value of output.
Output values of majority elements are used as inputs for modules or as outputs of
the system. System outputs are stored in output files in each module of the system.

2.1 Synchronization of Modules

Schema of synchronization of designed system can be seen in Figure 3. After
operator’s manual initialization of a copy of client’s application on each system
module (I), which period of time is equal on each module A, B and C, but starts in
different moments, synchronization of modules starts (SS). Synchronization starts
in different moments in time, but ends at the same time on each module, so the
work of modules is synchronized. After the synchronization, synchronized blocks
of application (SB1 to SB4 on Figure 3) are performed. The client’s application
ends with stop function (ST).

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 45 ░

Figure 3

Timeline of client’s application performance on each system module

Application is defined as a sequence of synchronized blocks. Each of blocks starts
with use of synchroblock function (SB), performs client’s algorithm (CA) and
ends with use of function, which performs majority element function execution
(CHK). There is period of time in which all of synchronized block work must be
done. The author of client’s application defines this time period. In the case, there
is a time reserve in synchronized block, system fills this time with waiting cycles
(W). See Figure 4. SB and CHK functions are tied together with time stamp,
which is defined by program’s author.

Figure 4

Timeline of synchronized block of client’s application

3 Verification of Architecture

Very important task is to verify reliability of designed architecture and to test fault
tolerance of the architecture. Tests were performed to approve:

• Ability of long-time synchronized work of TMR modules.

• Occurrence of faults within operation of computer system in expected
environment of service.

L. Vokorokos et al.

Fault Tolerant Computer System Based on TMR Architecture

 ░ 46

• Ability of proper function execution under conditions of fault occurrence
in hardware or error occurrence in software.

Series of tests were performed in real operation and in operation with simulations
of faults. Faults were simulated with special software applications, with
predefined different outputs for each of modules and with hardware simulated
faults, where communication channels between modules were mechanically
interrupted. Basic information about some performed tests is summarized in Table
2a. Operation time of each test is time in which all synchronized blocks of
software application were performed. In each test all synchronized blocks were
performed and operation of all three modules was completely synchronized.

Test

Operation time

Synchronized blocks
[Number]

1 7h 32min 1000
2 16h 48min 2000
3 15h 0min 2000
4 22h 25min 3000

5 20h 12min 3000

Table 2a
Basic parameters of performed tests

Test applications were designed to verify ability to mask fault occurrence in one
of modules or to recover system after occurrence of faults in two modules. In
synchronized blocks of applications different outputs were generated. In some
blocks only one module generated different output, in another blocks two modules
generated different outputs. Conclusions of tests are summarized in Table 2b.

Test

Faults
[Number]

Masked
[Number]

Double faults
[Number]

Safe outputs
[Number]

1 250 250 200 200
2 250 250 500 500
3 250 250 500 500
4 1000 1000 250 250

5 1000 1000 250 250

Table 2b
Software simulated faults in modules of computer system

Hardware simulations of faults were performed through the interruption of
communication channels to perform simulation of faults in one or two modules of
system. Conclusions of tests are summarized in Table 2c.

5th Slovakian-Hungarian Joint Symposium on Applied Machine Intelligence and Informatics

January 25-26, 2007 ░ Poprad, Slovakia

 47 ░

Test

Faults
[Number]

Masked
[Number]

Double faults
[Number]

Safe outputs
[Number]

1 78 78 53 53
2 157 157 246 246
3 243 243 313 313
4 228 228 126 126

5 346 346 212 212

Table 2c
Hardware simulated faults in modules of computer system

Conclusions

The aim of the project of fault tolerant computer system on the Department of
Computers and Informatics of Technical University of Košice as part of the
VEGA projects No. 1|1064|04 and 1|4071|07 is to analyze possibility of fault
tolerance increase of computer system with use of TMR architecture with personal
computers in the role of TMR modules. Another aim is to design hardware and
software of the architecture. The crucial part of effort is the ability to synchronize
operation of modules and to maintain reliable communication between modules.
The conclusions of realized tests approved the ability of system to operate
properly in conditions of fault occurrence.

References

[1] VOKOROKOS, L.: Diagnosis of Fault Tolerant Compound System Using
the Observer and Parallel Computer System, Transactions of the VŠT -
Technical University Ostrava, 2005, pp. 68-76, ISSN 80-248-0358-5

[2] VOKOROKOS, L.: Parallel Computations for Fault Tolerant System Using
Observer, 2nd Slovakian-Hungarian Joint Symposium on Applied Machine
Intelligence, Herľany, Slovakia, January 16-17, 2004, pp. 37-41, ISBN 963
7154 23 X

[3] VOKOROKOS, L.: Parallel Computing Recovery for Fault Tolerant
Systems, International Conference in Memoriam John von Neumann,
December 12, 2003, Budapest, HU, 2003, pp. 13-22, ISBN 9637154213

[4] HLAVIČKA, J., RACEK, S., GOLAN, P. et al.: Číslicové systémy odolné
proti poruchám, Praha : ČVUT, 1992. 330 p.

[5] BAČA, J.: Spoľahlivosť a diagnostika, 2. prepracované vydanie.
Bratislava: Alfa, 1989. 176 p. ISBN 80-05-00429-X

[6] BLATNÝ, J., DRÁBEK, V.: Standardizace číslicových rozhraní, 1. vyd.
Brno : MON 1990. 302 s.

Supported by VEGA Project No. 1|4071|07

