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Abstract: A number of various approaches for robot navigation have been designed.
However, practical realizations strike on some serious problems like imprecision of
measured data, absence of complete knowledge about environment as well as
computational complexity and resulting real-time bottlenecks. Each of proposed solutions
has some of mentioned drawbacks. Therefore one of possible solutions seems to be in
combining several means of computational intelligence. In this paper a combination of
harmonic potential fields, neural networks and fuzzy controllers is presented. Also some
simulation experiments are done and evaluated.

Keywords: harmonic potential fields, neural networks, fuzzy controller

1 Introduction

Theoretically the problem of finding the shortest or the safest path between two
points in an environment with obstacles can be well defined and solved. Basically,
there are three groups of approaches: heuristic, exact and grid algorithms (a good
overview can be found in [4]). The first group is represented mainly by Bug
algorithms, which are simple and suitable for environments with static obstacles.
Exact algorithms, mainly visibility graphs and Voronoi diagrams, enable a
mathematically correct way for finding the best solution. If there is no possible
path (too restrictive obstacles) then they will be able to give a definite answer
‘no’. However, they require precise sensing of obstacles and are suitable above all
only for static environments. Algorithms based on grid description are more
convenient for practical use because the precision of sensing is limited.

Potential fields are a part of grid algorithms. They use the metaphor of magnetic
field or gas spreading, firstly mentioned in [5]. It is possible to determine the
precision of the grid or to design multi-layered grids, which enable only roughly to
navigate a robot in a simple environment with only few obstacles and in the case
of a more complicated area to switch to a more detailed grid description. There are
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also methods, which do not require having a complete map a priori. It can be
constructed in steps, too [2]. It means they can be used also in dynamic
environments. The only difference between static and dynamic environment is that
in the second case the environment is changing during the movement of a robot,
e.g. we consider vehicles or walkers.

However, also potential fields have some lacks, especially their computational
complexity. Therefore, in this paper a structure combining potential fields with a
neural network and fuzzy controller is proposed. The next section will describe
basic principles of potential fields. Then the proposed structure will be described
in detail and finally, some experiments and conclusions will be mentioned.

2 Potential Fields

In general, there are two principal objects in each environment: goals (we will
further consider only one goal) and obstacles. The goal should attract a robot to its
position and obstacles should repulse it from them. Therefore we will speak about

attractive FG and repulsive Fo strengths, respectively. Considering a two-

dimensional space X X Y the total strength F in a certain point will be given as a

vector sum:

F(x )= Fo (%, 1)+ 2 Fo (%, ). (M

A set of all strengths for all combinations of (X, y) creates a vector field F (see
Fig. 2).

Potential U (X, Y) is numerically equal to the work done between this point and
a point with a zero potential (Xo, Yo) along the path I, i.e.:

(X,Y)
U(X,Y)= j F.dl. @)

(Xano)

Again, the depiction for all combinations of (X, y) creates a potential field U (see
Fig. 1).

Let us consider an imagination of a landscape. We let to go down an element. Due
to gravity it will move to a point with the minimum height level (a ditch) along a
path with the maximum descent (a valley) avoiding all areas with higher levels
(hills). Now we can define the goal as the minimum point and obstacles as areas
with higher height levels. In such a way we can obtain the fastest path to get to the
goal. There are lots of possible definitions for the goal and obstacles [2, 5]. They
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enable us to define a safety range outside of obstacles, whose original positions
are depicted as black areas in Figs. 1 and 2, so the border among obstacles and
free area is not crisp but rather fuzzy. In other words, to get to the safety range it
does not mean the robot will implicitly strike on an obstacle but it is not safe. This
range can be simulated by continuously increasing functions in the direction to
obstacles. In such a way we can obtain a compromise between speed and safety,
which is the most important criterion in real applications.

Potential fields represent the description of the environment, which can be
obtained completely a priory at the start of the motion process or sequentially (per
parts) dependent by the radius of sensors, which can decrease time costs. Vector
fields represent a map of actuator values, the orientation and magnitude. Therefore
to fulfil the above criterion the relation between a potential and a vector field is
defined as follows:

F=-VU. (€)

Figure 1

Example of a potential field with 3 obstacles Oy, O,, O3 and one goal G with computed path from the
starting point S

Basically, the navigation consists of two stages. Firstly, from sensed data the
potential field is calculated. Then using (3) the vector field (Fig. 2) is calculated. It
represents all possible solutions from all possible starting positions. Both stages
are evidently computationally very demanding. However, we usually need only a
part of the vector field, which simplifies the computation.

In Fig. 2 we can see the actuator values decrease very quickly from obstacles to
the goal. It means we must use data types with high precision and usually for more
than 1 000 iterations it is necessary to define special extended data types and
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together with them special arithmetic, which makes the computation still more
complex. Another possibility is finding suitable definitions for obstacles and goal
but this way is often application dependent.
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Figure 2

Vector field of actuator values computed from the potential field in fig. 1. Black circles represent

obstacles

The mentioned example is only a simple one. It has only one minimum, which is
also global. However, there are also situations with several minima. The task is to
navigate a robot to the global minimum not to local ones. Especially, the so-called
‘robot traps’ [4] (Fig. 3) can be created in the case of non-convex obstacles. If the
robot enters such a trap then the algorithm will not be able to pull it from the trap
and the robot ‘freezes’.
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A robot trap. The robot jams in the point R instead of G

Figure 3

There are two basic ways how to solve this problem: either to design methods for
recognizing such a danger, which is again application dependent or to use such
potential fields, which have only one minimum. Harmonic potential fields posses
just such a property, firstly used in [6].
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1.1 Harmonic Potential Fields

By the definition, harmonic functions U have to fulfil for all dimensions X; the
condition of Laplace’s equation [3]:

5
ViU = Z o 0. (4)

For simplicity let us consider a one-dimensional function U(x). Using Taylor
series we will get values in adjacent points of U(X, y), i.e. U(x+1) and U(x-1) as
follows:

U 12U,

U(x+1)=U . 5
(x+1)=U(Xx)+ x 2 ok (5)
U(x) 1 d*U(X)
Ux=1)=U(x)- . — 6
(x-1)=U(x) o +2 PV (6)

Neglecting further members in (5), (6) and their subsequent summation will result
in:

2
U(x+1)+U(x—1)—2.U(x)z%=0. )
X

The right part of (7) is equal to zero because of (4). Similar situation will be in a
two-dimensional space (X x Y) where we will have 4 adjacent points to U(X, Y).
We can see U(X, y) is approximate to the arithmetic average of its neighbours.
Further, from the simplicity reason, we will not more use the symbol of
approximation but equivalence:

Ux+1,y)+U(x-1, y)+U(x,y+1)+U(x,y—1))
4

The equation (8) expresses energetic balance, too. If the point (X, y) is neither an
obstacle nor the goal then the sum of all potentials must give zero, which also
corresponds to the physical concept.

U(x, Y)=( - (8)

In such a way, we can describe all points (X, y) in the area and we will get a
system of ||X|| x ||Y|| (let us say n) linear equations. Solving such a system is
computationally a very arduous task. To speed up the computation the use of an
iterative method is necessary. The Gauss-Seidel method seems to be the best
possibility. Having a system of linear equations A.x=b the vector X of variables X;
(in our case U(x;,y;)) will be calculated as [1]:
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K — —
Xi j<i j>i , )
a..

b= a,.xi =) a,.x"

where K is the iteration step and i, j are indexes of ordered equations. This method
is computationally simpler than the Jacobi method (which is similar to it). We can
see for calculating x;* the values from preceding equations (with order less than i)
are already from the same iteration cycle.

Using (9) for (8) we will get:

k

U (x,y j )=

L(u=(x U (x U '(x U (x o
Z' ( i+19yj)+ ( i_1,yj)+ ( i,yj+1)+ ( i,yj_l) .
As starting values for k=0 we will set the points (X, y) in obstacles to the
maximum, (X, Yg) to the minimum and other points to zero. If changes of
solutions in (10) fall in the tolerance, then the potential field will be constructed
and further iterations stopped.

3 Hybrid Navigation Structure for Parking Problem

Potential fields can be principally used also for environments with dynamic
obstacles, which is our case of a parking navigation system when we take into
consideration moving cars (robots). However, this supposes recalculation of the
potential field in each sampling step, which is impossible to do it in real-time.
Therefore we proposed a hybrid structure with these elements and tasks:

1 Harmonic potential field — for calculation of the path in the initial step. All
obstacles (parking boxes as well as cars) are considered as static. The path is
described as series of orientation marks.

2 Neural network — as a controller (with back-propagation learning) trying to
control the robot to pass through the orientation marks.

3 Fuzzy controller — as a Mamdani type controller solving a problem if a car
starts to move (in other words, if it becomes to a dynamic obstacle). Then it
will take over the control from the neural network and will do obstacle
avoidance trying again to find orientation marks.

Using knowledge about the structure of a given car park and current occupation of
individual parking boxes, see Fig. 4, (sensed by a type of appropriate sensors, e.g.
cameras) a potential field is created, see Fig. 5. At this moment we suppose, the
whole area is static (maybe it will also stay static). Then a vector field is
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computed. After determination of the starting point we will get the resulting path
(the safest and shortest), see Fig. 6, and the robot will start its motion. In each
sampling step it is controlled by the neural networks and also the situation in the
car park is observed. There are controlled the turning angle and acceleration. If the
environment stays static then control will continue by the neural network if no
then the control will be switched to the fuzzy controller. It uses principles of sonar
perception, detailed described in [7]. Its use is necessary if the obstacle intersects
the computed path. The controller has two particular tasks, which are solved
simultaneously: obstacle avoidance and searching for orientation marks. They
issue to bringing the robot again to orientation marks. After that the control is
again switched to the neural network. The whole process can be seen in the
environment of a simulator, Fig. 7 and 11.

4 Experiments

Here two experiments will be described. The first one E1 can be seen in Figs. 4-7
and the simulation of the second one E2 in Fig. 11. Three basic characteristics
were observed in dependence of sampling steps: control type, turning angle and
acceleration.

Figure 4

E1 - Sensed situation of the car park

At the first experiment the environment was all the time static and the goal was
reached successfully. The characteristics are in Figs. 8-10.
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Figure 5
E1 - Created potential field

Figure 6

E1 - Computed path form the starting point S to the goal G

At the second experiment during the navigation another car intersected the chosen
path so the fuzzy controller had to do obstacle avoidance. In spite of that the goal
was reached successfully. The characteristics are in Figs. 12-14.
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Figure 7

E1 - Simulated navigation in static environment
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E1 - Control type, FC — fuzzy controller, NN — neural network
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Figure 9
E1 - Turning angle in radians
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Figure 10
E1 — Acceleration in m.s™>

Figure 11

E2 - Simulated navigation in dynamic environment
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Figure 12

E2 - Control type, FC — fuzzy controller, NN — neural network

In both experiments, Figs. 8-10 and 12-14, we can observe certain chattering. The
changes of turning angle and acceleration are in some moments significant. This is
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caused in times when the control is changed between the fuzzy controller and
neural networks, which is a well known drawback of hybrid systems.

Changes of the control type occur also in the experiment El, i.e. not only during
avoidance of a dynamic obstacle as mentioned in above. This state arises always
when the robot approaches to an obstacle too close or robot sensors lose the
contact with orientation marks for a while then the situation will be evaluated as a
dynamic obstacle and the fuzzy controller will take over the control.
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Figure 13

E2 - Turning angle in radians
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Figure 14

E2 - Acceleration in m.s™

Conclusions

The presented work had the aim to show the possibility of use harmonic potential
fields together with systems of computational intelligence like fuzzy controllers
and neural networks. All three approaches are based on numerical calculations and
all three ones are derived from metaphors existing in the real world. The aim of
this paper is also to contribute to discussions about using the so-called ‘dirty’
methods in artificial intelligence, whether yes or no. The answer in the opinion of
the author is unambiguously ‘yes’.
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There are still a number of problems that were discovered during experiments
(some experiments failed) but obtained results confirm applicability of the chosen
approach. As further topics for research in this area might be regarded these:

e Design of functions for constructing potential fields, which could not
cause rapid decrease of values in the vector field.

e Design of methods for quicker constructing of potential fields.

e  More sophisticated switching between various controllers to eliminate the
effect of chattering.

e Design of further approaches (also based on heuristics) being able to
solve more complicated situations and various ‘traps’.
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