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Sensitivity analysis of building comfort and energy design variables

Background in the field of building comfort, energy and environmental optimization

First building comfort, energy and environmental design optimization (BECEDO) research efforts are dated back to
the early 70’s?, however most in-depth analysis is carried out in non-architectural fields (IT, mathematics and
operation technologies). Among building design optimization studies, most attention is focussed on the application
of active (mechanical) design variables (HVAC systems), renewable energy harvesting and supply system variables
and the combination of active and passive (architectural) design input variables?. Regarding the passive design
variables, which should be determined for an optimal comfort-energy, as well as environmental impact balance
performance, only the numerically easy to be-parametrized design variables are taken into consideration, such as
opaque and transparent envelope structures and materials, e.g., the thicknesses and thermal properties of the
insulation and walls, as well as wall-window ratios (WWR), orientation (ORI), materials, structures (STR) and shading
for instance®. Though building shape has significant impact on building operation cost?, i.e., up to 60-80% energy
conservation®® and up to 80% LCA savings are possible, the investigations dealing with building geometry as a design
variable (BGDV) in the BECEDO process is still in its infancy’. Estimations® predict 60-70% energy consumptions
reduction in HVAC and artificial lighting system improvements and up to 20% savings by using intelligent automation
systems, however the energy saving potential of optimized space organization and complete building shape design is
still missing. Another issue evolves after analysis of the existing BECEDO literature: the stochastic behaviour of the
most most frequently applied evolutionary technique (generic algorithms GA) randomly moves in the search space
and only near optimum solutions delivers.

Therefore, current research framework intends to elaborate a BECEDO methodology that incorporates the intensive
analysis of BGDV-s in the optimization process and aims to ensure guaranteed solution(s) due to ‘scanning’ the total
search space, made with help of carefully predefined, comprehensive and strict rules.

Research framework

The fundament of the new design method to be developed is represented by the multiple award winning and
patented EnergiaDesign energy-positive building planning method®, using complex CFD, thermal and daylight
simulations as a design support.

As a first step, a modular space arrangement system was created, complemented by a series of building geometry
producing rules to select only those building geometry configurations, which meet the space generation rules. 176
family house shape configurations were selected from a total of 201,359,550 possible geometries. Applying 3 typical
WWR (30%, 60%, 90%) in the main facade and 5 ORI from (E, SE, S, SW, W), as well as 2 different structures (Uwan =
0,24 W/m?K and 0,11 W/m?K; Usieor = 0,28 W/m?K and 0,17 W/m?K; Uroor = 0,17 W/m?K and 0,14 W/m?K; Uglazing = 1
W/m?K and 0,7 W/m?K;). The combination of these design input variables resulted 5,010 building cases, which were
calculated in a dynamic thermal simulation framework (IDA ICE) to gain a database of input and output design
variables.
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As a second step, different regression models were created to substitute modeling and calculation time capacity
intensive white-box simulations. These prediction models should support an automated decision and evaluation
algorithm system to produce the optimized buildings. Beside the regression analysis, sensitivity analysis provides
information of critical importance about the impact of input design variables on the comfort and energy
performance of the building cases. In the following sections the sensitivity measure of the input variables in two
different regression model system were investigated.
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Fig.1.: Simulation database consisting of 167 shapes, 3 WWR, 5 ORI and 2 structural variations
Feature importance by decision tree regressor
Decision trees are effective decision support tools; where the decision tree is a special graph, i.e. a tree, representing
the decisions together with their possible consequences. They are widely used because they are simple to
understand and interpret. Hereinafter, a binary decision tree is used, where the internal nodes of the tree represent
simple tests related to the value of the considered input variable. There are exactly two successor children of each
node. Should the value of the variable be below a given threshold then the decision proceeds towards one of its
children, otherwise the other child is selected and the decision proceeds towards that branch. The leaves, i.e. those
nodes without children, represent the decisions. When generating the decision tree, it is important to select in the
right sequence the considered input variables together with their thresholds. This is usually performed via
minimizing the variance sum of the subtrees.

n
1
MSE = ;Z(yi —w)? Equation 1.

To select the decisions applied at the nodes of the decision tree, the Mean Squared Error method is used to evaluate
the gain of the variance, see Equation 1. The regression model based on this decision tree is built. The importance of
the input variables based on their probable influence on the output related to the decision trees is given in the
following table and the relative difference of the influence of the input variables is depicted in the following graph
(Fig. 2.). It is obvious, that considering the annual heating energy demand (HE) together with the sum of energy
demand (SE) as considered outputs, the most influential variable is the structure (Struct), i.e. the thermal insulation
and mass (0.5+) marked with green color, while in the other cases (cooling energy CE, lighting energy LE, thermal
comfort TE, daylight factor DF) the most influential variable is the wall-window ratio (WWR), namely 0.6-0.9. HE and
SE is also influenced by orientation (Ori) and A/S (external envelope surface to floor space ratio) with a medium
intensity. The figure displays as well, that for the annual heating energy (HE), annual cooling energy (CE) and sum of
energy (SE) the influence is strongly based on the structure. On the other hand, considering the lighting energy and
comfort related outputs (TC, DF) the most important if not the only determinative variable is the wall window ratio.

R? Output
0,968 HE
0,889 CE
0,963 LE
0,921 TC
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0,952 | 049 | | 00

Table.1.: Feature importance of input variables in decision trees
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Fig.2.: Relative difference of the input variables’ feature importance in decision trees
Normalized absolute feature weights of linear regression
Linear regression models the dependent variable as a linear combination of the descriptive variables. When
generating the linear combination model, the coefficients of the descriptive variables is sought. To support the
nonlinearity of the functions, new input variables are added with multiplicative combinations of the original inputs,
namely quadratic (secondary) and tertiary (3™ power) input variables are introduced.
When the original 4 descriptive variables are used the most influential input variable is the A/S (0.8-0.9),
nevertheless the accuracy of the approximation is not appropriate, i.e. R*=0.7-0.8. This case is given in the following
table. For the calculation of the accuracy please consider Equation 2.
RZ
0,721
0,771
0,833
0,831
0,842
0,691
Table.2.: Normalized absolute feature weights of input variables in linear regression

R2_q_ 20—’ Equation 2.
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When the original descriptive variables are used together with multiplicative combinations of the inputs up to the
guadratic power, the single complex descriptor is the most influential (between 0.85-0.99 depending on the
estimated output). Please consider the table below. The next graph depicts the influential ratios of the input
variables. In both six output cases the most influential variable is the complex descriptor of the building
configuration, the A/S ratio (compactness of the building body shape).

A/S A/S A/S
R? A/S | Struct | WWR | Ori | A/S? * * * Struc?
Struct | WWR | Ori
0,93 0,05 0,01 0,01 0,00 0,03 0,00 0,14
0,86 0,02 0,01 0,00 0,20 0,06 0,00 0,05
0,92 0,02 0,32 0,03 0,42 0,08 0,04 0,05
0,89 0,01 0,01 0,00 0,20 0,01 0,00 0,02
0,91 0,00 0,01 0,01 0,21 0,02 0,00 0,01
0,92 0,04 0,00 0,01 0,06 0,02 0,00 0,12

Table.3.: Normalized absolute feature weights of input variables in linear regression — 2" power



1,2

mA/S
! Struct
0,8 WWR
Ori
0.6 A/S72
0,4 B A/S*Struct
H A/S*WWR
02 B A/S*Ori
0 = I | I | ban — - - - I B Struct2

HE CE LE TC DF SE

Fig.3.: Normalized relative feature weights of input variables in linear regression — 2" power
When the original descriptive variables are used together with multiplicative combinations of the inputs up to the
third power, the number of single variables is 34, therefore it is problematic to depict them or to summarize them in
a table. However, during the investigations, it can be seen that the product of the complex descriptor and the
structure is the most influential (A/S*Struct: 0,802), the complex descriptor is the second most influential (A/S:
0.534), while the third most decisive is the product of the complex descriptor and the square of the insulation
(A/S*Struct?: 0.267); moreover, the other input variables have relatively small influence.
Discussion
Important to mention that the only shape expressing variable in particular study is represented by the A/S ratio that
is responsible to provide information about the compactness of the building shape. By representing the ratio
between the external envelope surface (heat loss surface) and the conditioned indoor floor space area, this variable
is a complex and indirect descriptor of the geometry. None of the remaining design input variables describe the
shape of the geometry.
In the decision tree evaluation structure dominates the influence as function of the transmission and thermal bridge-
based heat loss, further, the WWR gains importance as the function of winter solar heat gains, transmission heat
losses and summer solar load. The A/S descriptor possesses no significance.
In the linear regression investigation, the A/S input variable gains on influence in both secondary and tertiary power
for all output result parameters. On the one hand, this effect is caused by the various compactness of the form
(affects heating demand and thermal comfort), on the other hand this effect is due to the changing depth of the
indoor space (modifies solar gains and load, therefore heating, cooling, and lighting demand, as well as thermal and
visual comfort). This would mean that the geometry as design variable has an outmost importance on comfort and
energy performance of buildings. The accuracy of the approximation is appropriate in both decision tree as well as
linear egression (2" and 3™ power). Nevertheless, this conclusion is regarded only as a potential main impact
variable for the time being since the scale of the input variables can modify the and hence distort the feature
weights.
Outlook
In further research steps more sensitivity analysis methods (e.g., Morris Elementary-Effect), as well as regression
analysis (e.g., dense neural network) are to be carried out to broaden the insights about the measure of input
variables’ influence. Further analysis is required to examine the robustness of the 2"* and 3" power linear regression
results, mainly to handle the different input variable value-scales. The insights provide the basis for the optimized
building design algorithm.



