
Uncertainty and Risk: Mathematical Concepts 
and some Geological Applications 

János Fodor1 and György Bárdossy2  
1Department of Biomathematics and Informatics, Szent István University, 
Budapest, Hungary. E-mail: Fodor.Janos@aotk.szie.hu
2Hungarian Academy of Sciences, Budapest, Hungary 
E-mail: h4750bar@helka.iif.hu

Abstract: The aim of this paper is to review traditional and recent approaches for 
handling uncertainty in geological investigations. First we classify main types of 
uncertainties occuring in this framework. Then we outline traditional 
mathematical methods frequently applied in geology. We point out their 
limitations as well.  In the second part of the paper we present new methods that 
are more suitable for handling some types of uncertainty such as vagueness and 
incomplete information. Among these methods, fuzzy set theory seems to be one of 
the most efficient for geological purposes. The problems of uncertainty in risk 
analysis are shortly discussed. The authors present their experiences in the 
geological application of the reviewed methods. Finally, the main test 
calculations, preformed by the authors are listed. 

1 Introduction 
Uncertainty is involved in many real applications. Apart from the definition, it is 
an important matter of decision whether one would like to model uncertainty in an 
explicit way. If not then it is typical to use a deterministic model as an 
approximation of the uncertain phenomenon. In addition, the worst case analysis 
is an approach that notices the presence of uncertainty without modeling it 
explicitly. It works with upper (or lower) bounds, trying to ensure that no larger 
(or smaller) value of an uncertain parameter may occur in the given system. In this 
paper we shall focus on those cases in which the decision is to model uncertainty 
explicitly. 

Before the mid-sixties, probability theory and statistics were the only tools to 
model uncertainty. Since that time, additional alternative theories have been 
suggested for uncertainty modeling. However, we share the surprise of 
Zimmermann (2000) who could not find any general definition of uncertainty. In 
this paper we also follow him in the sense that „we shall focus on the human-
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related, subjective interpretation of uncertainty which depends on the quantity and 
quality of information which is available to a human being about a system or its 
behavior that the human being wants to describe, predict or prescribe” 
(Zimmermann, 2000). The choice of an appropriate uncertainty calculus should 
depend on the causes of uncertainty, quantity and quality of information available, 
type of information processing required by the respective uncertainty calculus. 

The paper is organized as follows. In the next section we summarize some of the 
fundamental concepts, especially those ones related to uncertainty. Then we 
briefly recall traditional methods for handling uncertainty, together with their 
shortcomings. After that a summary of some promising alternative uncertainty 
calculi is presented. Before the concluding remarks we touch upon our 
experiences in geological applications of these new methods, performed by us in 
diverse test calculations. The interested reader should consider the recent book by 
Bárdossy and Fodor (2004) for more details both on the theory and on the 
applications. 

2 Basic Concepts 
Geological investigations are characterized by particularly high uncertainties. It is 
therefore of paramount importance to understand the concept of uncertainty in 
general and its application to geology. In our opinion, uncertainty is a general term 
expressing lack of certainty and of precision in describing a geological object, a 
feature or a process. Highly competent scientists distinguish the following types of 
uncertainties (Dubois and Prade 2000, Zimmermann 2000): 

1. Imprecision or inaccuracy, expressing the deviation of measurements 
from the true value. 

2. Vagueness or ambiguity, the uncertainty of non-measurable objects or 
properties. 

3. Incompleteness, the uncertainty due to incomplete information. 
4. Conflicting evidence, the uncertainty arising from contradicting 

evidences present in the studied system. 
5. Presumption or belief, when all available information is subjective. The 

well known „expert’s opinion” belongs to this group. 

The above classification is valid for geological investigations as well. However, 
the complexity of most geological problems requires a more detailed and specific 
classification. The one elaborated by us distinguishes two main groups (Bárdossy 
and Fodor 2004): 

A. Uncertainties due to natural variability (called also aleatory 
uncertainties). 

B. Uncertainties due to human shortcomings and incomplete knowledge 
(called also epistemic uncertainties). 



Natural variability is a property of nature, existing independently of us. It can be 
described and quantified by mathematical methods, but not diminished by further 
empirical studies (although it may be better characterized). That’s why it is also 
called irreducible uncertainty. The term aleatory uncertainty intends to emphasize 
its relation to the randomness in gambling and games of chance.  

On the other hand, the second kind of uncertainty is the incertitude that comes 
from scientific ignorance, measurement uncertainty, inobservability, censoring, or 
other lack of knowledge. In contrast with aleatory uncertainty, epistemic 
uncertainty is sometimes called reducible uncertainty since, at least in principle, it 
can generally be reduced by additional empirical effort. This fundamental 
difference has been often neglected in geological investigations.  

The second group has been divided by us for both computational and geological 
reasons into the following subgroups: 

B1. Uncertainties in the phase of preparing the input data. 
B2. Uncertainties in the phase of geological evaluation. 

They are generally evaluated separately for each variable but in some cases the 
calculation of the total uncertainty is required. 

The sources and characteristics of these uncertainties have been discussed in detail 
in the book of Bárdossy and Fodor (2004). 

3 Traditional Approaches for Handling Uncertainties 
As we already mentioned in the Introduction, there exist deterministic methods 
that notice the presence of uncertainty without modeling it explicitly. On the other 
hand, probability theory and statistics (may be called stochastic methods) allow 
for a certain type of uncertainty in the given system. In this theory probability is 
considered as a measure of uncertainty. (We suppose that the reader is familiar 
with the main concepts and methods of the probability theory.) Two main 
approaches can be distinguished. The frequentist approach generally applied in 
geology requires repeated identical experiments to calculate the main 
characteristics (such as expected value, standard deviation, and/or the probability 
distribution) of the studied variable. However this can be fulfilled only in few 
cases because of technical and financial reasons. For example, how to repeat 
borehole sets? This represents a significant limitation for the application of the 
frequentist approach in geological investigations. Neglecting this requirement 
leads to more or less important bias of the results. Within the stochastic 
framework, there exists a second approach as well, the Bayesian one. This 
approach works with subjective probabilities, depending not only on the 
phenomenon itself, but also on the state of knowledge and on the belief of the 
researcher. Bayesian probabilities can be applied also to unrepeatable phenomena. 



They change with time as new pieces of information are acquired by the 
investigations. This concept is based on the famous Bayes’ Theorem.  

In this context prior probabilities refer to the event prior to updating by new pieces 
of information and posterior probabilities to the same event after updating by new 
pieces of information acquired by new investigations. Geological investigations 
are characterized by new pieces of information obtained step-by-step during the 
investigation. This is why they are particularly suitable for the application of the 
Bayesian approach. Unfortunately, relatively little has been done so far for the 
geological application of this concept. 

For several decades, the methods based on probability theory have been applied 
successfully for the evaluation of geological investigations. However, some 
important limitations and difficulties appeared particularly for the evaluation of 
geological uncertainties, as listed below:  

1. The input data of the deterministic and stochastic approaches are single 
valued (real numbers), called also „crisp” numbers. Only natural 
variability can be expressed by this type of data and not the uncertainties 
due to human shortcomings and incomplete knowledge. 

2. The basic axioms of the probability theory, called Kolmogorov axioms, 
deal only with mutually exclusive subsets. However in geology disjoint 
subsets are rare, transitions are much more frequent. 

3. Uncertain propositions and statements cannot be evaluated in terms of 
repeated experiments. 

4. Semi quantitative and qualitative (linguistic) variables are not suitable for 
most statistical evaluations. 

For the reasons listed above, we consider that methods based on probability theory 
are mathematically correct, but they do not offer optimal solutions for several 
geological problems, particularly for the evaluation of uncertainties. 

4 Review of Uncertainty Oriented Mathematical 
Methods 
New mathematical methods have been developed since the sixties with the aim to 
efficiently handle the uncertainties; especially, to represent what is known about 
real valued but uncertain quantities. For situations in which the uncertainty is 
purely aleatory, probabilistic and statistical methods are usually preferred. When 
the gaps in our knowledge involve both aleatory and epistemic uncertainty, several 
competing approaches have been suggested. Let us stress that the frequently used 
term of „uncertainty analysis” has been applied so far only for probabilistic 
evaluations. Thus it could not offer the entire evaluation of all types of 
uncertainties. The most important new methods consist of interval analysis 



(Moore 1979), fuzzy set theory (Zadeh 1965), neuro-fuzzy systems (Fullér 2000), 
possibility theory (Zadeh 1978, Dubois and Prade 1988), probability bounds 
theory (Walley and Fine 1982, Williamson and Downs 1990), and different hybrid 
methods (Cooper, Ferson, and Ginzburg 1996, Guyonnet et al. 2003). The 
common feature of these methods is that instead of single valued crisp input data 
they apply different new types of data expressing the amount of uncertainty 
related to the given input data. The basic properties of these methods and their 
advantages as well as their limitations are shortly outlined below. 

Interval analysis (Moore 1979) replaces crisp numbers by uncertainty intervals 
(Figure 1). The topic has become even more important with the advent of 
computers (Dubois et al., 2000): the motivation is “the quest for rigor in numerical 
computation on machines”. It is assumed that the true value is somewhere within 
the interval. Interval analysis lacks gradations and is the simplest method to 
express uncertainty through arithmetic calculations. The method guarantees that 
the true value will always remain within the interval, but this goal is achieved at 
cost of precision. During the calculations the intervals become wider and wider 
and the final results become too conservative. 

 

 

 
Figure 1: Two intervals and their sum (A+B) and difference (B-A) 

  

Possibility theory, a generalization of interval analysis, provides a suitable model 
for the quantification of uncertainty by means of the possibility of an event (Zadeh 
1978, Dubois and Prade, 1988). The theory acknowledges that not all types of 
uncertainty can be handled by probability distributions. Instead, it uses 
membership functions to represent non quantified uncertainty. The membership 
value of a number, varying between zero and one, expresses the plausibility of the 
occurrence of that number. The theory has been applied successfully in biology, 
health and medicine (Ferson and Ginzburg 1996, Ferson et al. 1999) and in 
different branches of industry and economy (Bardossy A. and Duckstein 1995, 
Fodor and Roubens 1994). 



The related fuzzy set theory expresses uncertainty very often by the use of fuzzy 
numbers. They represent estimates of uncertainty at different levels of possibility 
(or membership degree). Membership functions of fuzzy numbers are by 
definition unimodal and they have to reach at least in one point the possibility 
level one, that is, the full possibility. In geology mainly trapezoidal and triangular 
fuzzy numbers are applied. They can be both symmetrical and asymmetrical. The 
smallest and the largest possible values of the given variable represent the lower 
and the upper bounds of the support of the fuzzy number. All values of the 
variable must be within these boundaries. The values reaching the possibility level 
one are considered as the most possible estimates of the given variable, and this 
interval is called the core of the fuzzy number. Fuzzy numbers are generalizations 
of traditional real numbers, as the latter ones can be regarded as fuzzy numbers 
with a single point support. 

All usual arithmetic calculations can be carried out with fuzzy numbers. In 
contrast with probability, one of their great advantages is that they do not require 
the knowledge of the correlations among the variables and the type of their 
probability distribution (Takács and Várkonyi-Kóczy 1999a, 1999b). For the sake 
of numerical comparisons and ranking, fuzzy numbers can be reconverted into 
crisp numbers. This calculation is called defuzzification. But the main advantage 
of the fuzzy method is that prior geological experience can be incorporated into 
the construction of fuzzy numbers. This goal can be achieved by joint constructing 
of the fuzzy numbers by geologists and mathematicians. The method allows the 
appropriate evaluation of semi-quantitative and qualitative input data as well. The 
frequent transitions of the geological populations, as mentioned before, can be 
also represented by fuzzy numbers (Figure 2). Cagnoli (1998) showed the 
application of the fuzzy set theory in the study of volcanic rocks. In the last years 
it found a broad application in the geographical information systems as well 
(Altman 1994, Macmillan 1995, and Unwin 1995). 

 

 
Figure 2 (a): Crisp set A and its complement non-A. Their intersection is empty, 

and their union is the set of all elements of the universe.  
(b): Fuzzy set A and its complement non-A. They overlap. 

 



The way of constructing fuzzy numbers raises the problem of their robustness. 
Imagine that several well trained and experienced experts are asked to construct 
fuzzy numbers, based on the same crisp data. It is certain that the resulting fuzzy 
numbers will not be exactly identical. However, the differences are expected to be 
rather small. Luckily all the mathematical operations one has to carry out with 
fuzzy numbers are stable, that is, small changes in the input data yield only small 
changes in the results. As a consequence, the final results are not sensitive to small 
differences in the initial fuzzy numbers. 

The probability bounds theory (Walley and Fine 1982, Williamson and Downs 
1990) is a combination of probability theory with interval analysis, by 
representing epistemic uncertainty within the context of probability theory. The 
final idea is that one can work with bounds on probability for this purpose. It 
expresses uncertainty by two cumulative probability distributions, called 
“probability boxes”, or “p-boxes” for short. The area between the two curves 
represents the extent of uncertainty of the given variable, as it can be seen in 
Figure 3. Probability bounds are considered as a generalization of crisp numbers, 
intervals and probability distributions. Williamson and Downs 1990 also 
described algorithms to compute arithmetic operations (addition, subtraction, 
multiplication and division) on pairs of p-boxes. These operations generalize the 
notion of convolution between probability distributions. The great advantage of 
this method is that it can apply different probability distributions, e.g. normal, 
lognormal, exponential etc. and correlations for the variables to be studied. But the 
method works also without making any prior assumptions. The probability bounds 
get narrower with more empirical information about the given geological object. 
Its disadvantages are the more complicated calculations to be carried out. 
Nevertheless it seems for us to be a highly efficient approach in the case of safety 
assessments, when prior information is abundant. A detailed overview of p-boxes 
and their links to other representation of uncertainties can be found in Ferson et al. 
2002. 

 

 
Figure 3: Probability bounds 

 

The method of hybrid arithmetic (Cooper et al. 1996, Guyonnet et al. 2003) 
combines probability distributions with intervals, fuzzy numbers and probability 



bounds in different manner. These methods allow the use of all kinds of numbers, 
this being their greatest advantage. These are the newest among the methods of 
uncertainty analysis and there are very few publications on its application. 

5 Uncertainty of Risk Analysis in Geology 
Risk is a common term in science, economy and industry. According to the 
definition  of the Society of Risk Analysis, risk is the potential for realization of 
unwanted consequences of a decision or an action. Risk analysis is defined by the 
same society as „the process of quantification of the probabilities and expected 
consequences of risks” (2001). Risk analysis has been applied to several problems 
in geology, such as mineral exploration, mining projects, landslides, floods, 
volcanic and earthquake hazards. The safety assessments of toxic and radioactive 
waste repositories represent particularly important applications of risk analysis. 
All these calculations have been carried out so far by traditional deterministic and 
probabi-listic methods (Bonano and Cranwell 1988, Craig 1988, Hunter and Mann 
1992). At our knowledge, no uncertainty oriented methods have been applied for 
risks of geological problems so far. 

The basic requirement of risk analysis is to exclude the possibility of under-
estimation of risk at the given conditions. With the traditional methods measures 
of central tendency (mean, median etc.) are produced. However, experience 
showed that not these measures, but the tail of the distributions are of paramount 
importance, as they represent risks of low proba-bility, but of severe 
consequences. Dependency bounds analysis, suggested by Ferson (1996), seems to 
assure sufficiently secure estimates of these tail-probabailities. 

The methods of interval analysis and fuzzy arithmetic have been first applied to 
risk analysis by Ferson and Kuhn (1992) for ecological problems. Our aim is to 
apply these methods for the calculation of geological risks as well. 

6 Possible Applications in Geology 
As outlined in the foregoing sections, membership functions can express the 
degree of uncertainty of any input data collected in the course of a geologic 
investigation. But Dubois and Prade (2000) pointed out that they can express the 
degree of similarity and the degree of preference as well. In our opinion these two 
latter meanings can be applied also to geological problems. In mathematical sense 
the degree of similarity expresses the proximity of x to the chosen prototype 
elements of A. In geology a prototype can be a rock, a lithologic unit, a mineral 
deposit, a fossil species etc. Note that probability theory, as defined by the axioms 



of Kolmogorov, does not admit transitions, only full or no membership (see the 
characteristic functions), that is, only disjoint sets of data. However, in geology 
the transitions are very frequent. When we apply a probabilistic evaluation, we are 
obliged to draw sharp boundaries and to cut transitional zones into different 
pieces. Obviously this is a distortion of the natural reality. Membership functions 
can be applied with success to solve this problem, as presented in the next section. 

The degree of preference refers to a set of more or less preferred objects and µA(x) 
represents the degree of preference in favor of the object x. This case may occur in 
the exploration of mineral deposits, or of groundwater resources, when we have to 
choose among several potential regions. The degree of our preference for a given 
region can be represented by a membership function. The choice between suitable 
locations for commercial, toxic or radioactive waste disposal can also be 
represented by membership functions, instead of the traditional ranking of crisp 
numbers. Note that when using the degree of preference, the choice of the 
preferred object is ours. 

7 Some Real Applications of Fuzzy Arithmetic 
In the last four years a number of test calculations were carried out by us – 
applying the fuzzy set theory – on different geological problems. Parts of the 
results were published in separate articles or in the book Bárdossy and Fodor, 
2004. The main topics of our calculations have been: 

1. Estimation of the resources of solid mineral deposits. 

2. Quantitative mineralogic phase analysis of rocks and ores by X-ray 
diffractometry and by thermal analysis (separately). 

3. Safety assessment of radioactive waste disposal. 

4. Application to paleontological biometry. 

5. Measurements of ground-water transmissivity in boreholes. 

6. Evaluation of geochemical transitions in bauxite deposits. 

8 Conclusions 
In geology, uncertainty has long been considered a removable adverse 
circumstance that should gradually disappear with the overall development of the 
Earth-Sciences. However, one must recognize that a part of this uncertainty is an 
inherent feature of Nature. Therefore, understanding and appropriate handling of 
uncertainties should be part of all future geological investigations. 



Traditional mathematical methods – deterministic and probabilistic – applied so 
far in geological investigations are mathematically correct, but by far not optimal 
for the treatment of all kinds of uncertainties. 

New mathematical methods summarized in this paper are suitable to evaluate in a 
mathematically correct way semi-quantitative and qualitative („linguistic”) input 
data and to determine the uncertainties and errors connected with them. 

It is important to emphasize that the traditional and the new uncertainty oriented 
methods are context-dependent, and complete each other in geological 
investigations. 

A thorough study of the geological objects and processes is indispensable for any 
mathematical evaluation in geology. Without that even the most sophisticated 
method becomes an empty formalism. 

References 
[1] Altman, D., 1994, Fuzzy set theoretic approaches for handling imprecision in 

spatial analysis: International Journal of Geographical Information Systems, 
v. 8, p. 271-289. 

[2] Bardossy, A., and Duckstein, L., 1995, Fuzzy rule based modeling with 
applications geophysical, biological and engineering systems: New York, 
CRC Press, 232 p. 

[3] Bárdossy, Gy., and Fodor, J., 2004, Evaluation of uncertainties and risks in 
Geology: Berlin, Heidelberg, London, New York, Springer Verlag, 221 p. 

[4] Cagnoli, B., 1998, Fuzzy logic in vulcanology: Episodes, v. 21, p. 94-96. 
Cooper, J. A., Ferson, S., and Ginzburg, L. R., 1996, Hybrid processing of 
stochastic and subjective uncertainty data: Risk Analysis, v. 16, p. 785-791. 

[5] Dubois, D. and Prade, H., 1988, Possibility theory: An approach to 
computerized processing of uncertainty: New York, Plenum Press, 263 p. 

[6] Dubois, D., Kerre, E., Mesiar, R., and Prade, H., 2000, Fuzzy interval analysis, 
in Dubois, D., and Prade, H., eds., Fundamentals of Fuzzy Sets. The 
Handbook of Fuzzy Sets Series 7: Boston, London, Dordrecht, Kluwer 
Academic Publishers, p. 483–581. 

[7] Ferson, S., Root, W., and Kuhn, R., 1999, RAMAS Risk Calc: Risk 
assessment with uncertain Numbers: Setauket, New York, Applied 
Biomathematics, 184 p. 

[8] Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., and Sentz, K., 2002, 
Constructing probability boxes and Dempster-Shafer structures: SAND2002-



0835 Technical Report, Sandia National Laboratories, Albuquerque, New 
Mexico, p. 143. 

[9] Fodor, J., and Roubens, M., 1994, Fuzzy preference modeling and multicriteria 
decision support: Dordrecht, Kluwer Academic Publishers, 272 p. 

[10] Fullér, R., 2000, Introduction to neuro-fuzzy systems: Heidelberg, Physica 
Verlag, 289 p. 

[11] Guyonnet, D., Bourgine, B., Dubois, D., Fargier, H., Côme, B., and Chilès, 
J.-P., 2003, A hybrid approach for addressing uncertainty in risk assessments: 
Journal of Environmental Engineering, v. 129, p. 68-78. 

[12] Macmillan, W., 1995, Modeling: fuzziness revisited: Progress in Human 
Geography, v. 19, p. 404-413. 

[13] Moore, R. E., 1979, Methods and applications of interval analysis: 
Philadelphia, SIAM Studies on Applied Mathematics, Vol.2. 

[14] Takács, O., and Várkonyi-Kóczy, A.R., 1999a, Fuzzy handling of uncertainty 
in nonlinear systems, in De Baets, B., Fodor, J. and Kóczy, L.T., eds., 
Proceedings of EUROFUSE – SIC ’99, Budapest, p. 22-27. 

[15] Takács, O., and Várkonyi-Kóczy, A.R., 1999b, Information processing based 
on mixed-classical and fuzzy-data models, in IEEE International Workshop 
on Intelligent Signal Processing, Budapest, p. 23-27. 

[16] Unwin, D., 1995, Geographical information systems and the problem of error 
and uncertainty: Progress in Human Geography, v. 19, p. 549-558. 

[17] Walley, P., and Fine, T.L., 1982, Towards a frequentist theory of upper and 
lower probability: Annals of Statistics, v. 10, p. 741-761. 

[18] Williamson, R.C., and Downs, T., 1990, Probabilistic arithmetic I: numerical 
methods for calculating convolutions and dependency bounds: International 
Journal of Approximate Reasoning, v. 4, p. 89–158. 

[19] Zimmermann, H.-J., 2000, An application-oriented view of modeling 
uncertainty: European Journal of Operational Research v. 122, p. 190–198. 

[20] Zadeh, L. A., 1965, Fuzzy sets: Information and Control v. 8, p. 338–353. 

[21] Zadeh, L. A., 1978, Fuzzy sets as a basis for a theory of possibility: Fuzzy 
Sets and Systems, v. 1, p. 3-28. 


	1 Introduction 
	2 Basic Concepts 
	3 Traditional Approaches for Handling Uncertainties 
	4 Review of Uncertainty Oriented Mathematical Methods 
	5 Uncertainty of Risk Analysis in Geology 
	6 Possible Applications in Geology 
	7 Some Real Applications of Fuzzy Arithmetic 
	8 Conclusions 
	References 

