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1. Introduction 
 
Many different kinds of operation defined on subset of real numbers play fundamental 
roles in many important fields as for exmple in fuzzy set theory, fazzy logic, neural 
nets, operation research, optimization problems, differential equations etc. Special 
intention is paid to operations defined on interval of reals. The examples are t-norms 
and t-conorms which act on the interval [0,1], pseudo-additions and pseudo-
multiplications in the sense of Sugeno and Murofushi [9] which act on the interval 
[0,∞] or in the sense of E. Pap [6] which act on the interval [a,b] where is [a,b] is 
closed subinterval of [-∞, +∞], compesatory operators (Klement, Mesiar, Pap [5]) and 
uninorms (Fodor, Yager, Rybalov [1]). 
 In this paper we will consider a binary operations on unit interval i.e. above 
mentioned t-norms, t-conorms and uninorms.In many situations those operations have 
to be distributive one with respect to other as for example in the context of integrals 
based on decomposable measures. If the range of pseudo-aditive measures is subset of 
the unit interval  [0,1], countinous t-conorms S are natural candidates for the pseudo-
adition, leading to the concept of S-decomposable measures. For generalized Lebesque 
integral for [0,1]-valued functions, a second operation U turning ([0,1], S,U) into a 
semiring will be considered. Consequently U should be comutative, associative, non-
decreasing, and should have a neutral element e from (0,1] i.e. it should be a uninorm ( 



if e∈(0,1)) or a t-norm ( if e =1). Also some distributivity of U over S ( so-called 
conditional distributivity ) will be required (so [0,1], S, U) becomes a conditionally 
distributive semiring. 
 
2. Preliminaries 
 
Triangular  norms and conorms were originally introduced in the context of 
probablistic metric spaces. A triangular norm (shortly t-norm) i a binary operation on 
the unit interval which is commutative, associative, non-decreasing in each component 
and which has 1 as a neutral element. Dually, a triangular conorm (shortly t-conorm) is 
a binariy operation on the unit interval which is commutative ,associative, non-
decreasing in each component, and which has 0 as a neutral element. . The most 
important t-norms are the minimum TM , the product TP, and the Lukasiewicz t-norm 
TL, which (together with the corresponding t-conorms maximum SM, probablistic sum 
SP, and Lukasiewicz t-conorm SL) are given by 
  
  TM(x,y) =min(x,y),                    SM(x,y)=max(x,y) 
  TP(x,y) =xy                                SP(x,y)= x+y-xy                            
  TL(x,y) = max(x+y-1,0)             SL(x,y) =min(x+y,1) 
 Each countinuous Archimedian t-norm T has a multiplicative generator i.e. a 
countinnuous, strictly increasing function Ө:[0,1]→[0,1] satisfying ө(1)=1 such that 
T(x,y)=Ө(-1) (Ө(x)Ө(y)) where Ө(-1) : [0,1]→[0,1] is the pseudo-inverse of Ө given by 
Ө(-1) (x) = Ө-1 (min(x,Ө(1)) 
 The countinuous, strictly increasing functions s : [0,1]→[0,∞] satisfying 
s(0)=0 serve as aditive generators  of countinuous Archimedean t-conorms S as 
follows: S(x,y)=s(-1) ( s(x)+s(y)). In particular , S is strict if and only if s(1)=∞ ( i.e. if s 
is bijection) and S is nilpotent if and only if s(1)<∞. 
 Each continuous t-norm(t-conorm) can be represented as an ordinal sum of 
continuous Archimedean t-norms(t-conorms) i.e. there exists a uniquely determined 
(finite or coutable infinite) index set A, a family of uniquely determined pairwise 
disjoint open subintervals (aα, bα)α∊A of [0,1] and a family of uniquely determined 
continuous Archimedean t-norms(t-conorms) (Tα)α∊A such that T=(<aα,eα,Tα>)α∊A 
where each <aα,eα,Tα> is called summand. 
  A third class of operations will be important for us the so-called uninorms. 
Uninorrms are generalizations of t-norms and t-conorms allowing the neutral element 
lying anywhere in the unit interval [0,1]. Therefore a uninorm is binary operation on 
the unit interval which is commutative, associative, non-decreasing in each component 
and which has a neutral element e from [0,1]. Suppose U is a uninorm with neutral 
element e from (0,1). Define two functions TU and SU on the unit square as follows 
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It is easy to verifay that TU defined by (1) is a t-norm and SU defined by (2) is a t-
conorm. Therefore the structure of uninorms on the squares [0,e]2 and [e,1]2 is closely 
related  to t-norms and t-conorms. That is we have 
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with some t-norm T i some t-conorm S. T is called the underlying t-norm of U and S is 
called the underlying t-conorm of U. 
Concerning the definicion of U on the rest of unit square we have that  
  min(x,y) ),max(),( yxyxU ≤≤  if x yexorye ≥≥≤≤  
 Each increasing  bijection f:[0,1]→[0,∞] defines (using the convention 
0·∞=0) a left-countinuous uninorm U (there exist no continuous uninorm) with neutral 
element f-1(1) by means of  U(x,y)=f-1 (f(x)f(y)). 
 The generators of t-conorms, t-norms and uninorms suggest that a t-conorm 
can be seen as transformations of the addition of non-negative real numbers, wheres 
uninorms and t-norms are transformations of multiplications. 
 Throughout this paper we shall work with a continuous t-conorm S and left-
contninuous uninorm U satisfying  the following conditional distributivity (CD) 
  
 U(x,S(y,z))=s(U(x,y),U(x,z))  for all x,y,z from [0,1] with S(y,z)<1        (CD) 
In this context we shall refer to ([0,1],S,U) as a conditionally distributive semiring 
 
3. Conditional distributivity  
 
In this section we will consider two cases depending on neutral element e of uninorm 
U. The first case is when e=1 and then U becomes a t-torm T. The second case is when 
e .  ( )1,0∈
 
3.1 Conditional distributivity of t-norm T over t-conorm S 
 
The first case is described in the following theorem whose proof can be found in [3] 



Theorem  1 A continuous t-norm T and countinuous t-conorm S satisfies the condition  
(CD) if and only if  we have either one of the following cases 
(i) S=SM
(ii) There is a strict t-norm T* and a nilpontent t-conorm S* such that the additive 
generator s of S* satisfaying s(1)=1 is also a multiplicative generator  of T*, and there 
is an a  such that for some countinuous t-norm T[ [1,0∈ **, we have 
T=(<o,a,T**>,<a,1,T*>) and S=(<a,1,S*>). 
 
Remark 1 If in the functional equation (CD) we omit the condition  S(y,z)<1 we say 
that T is distributive over S and  then we have only trivial solutions, i.e., S=SM.  
 This remark shows how much the distributivity lows restrict the choice of 
possible t-conorms. Thus it seems reasonable to restrict the domain of the 
distributivity low if we look for solutions which are not trivial. 
 A full characterization of all pairs (T,S) satisfying the condition (CD) which 
are not continuous is still an open problem. 
 
3.2 Conditional distributivity of uninorm U over  t-conorm S 
 
In this subsection we give a characterization of all pairs (U,S) satisfying (CD) where U 
is a left-continuous uninorm with  neutral element e ( )1,0∈  and S is a continuous t-
conorm. In this subsection we will distinguish two cases. The first is when neutral 
element e of the uninorm U  is an idempotent element of the t-conorm S. The second 
case is when neutral element  e of the uninorm U  is not an  idempotent element of the 
t-conorm S. 
 
Theorem 2 A left-continuous uninorm U with neutral element  e ( )1,0∈  and a 
continuous t-conorm S where e is  an idempotent element of  S satisfy (CD) if and only 
if S=SM..
 Proof  Obviously each uninorm U is distributive over  SM because of 
monotonicity of U. Conversly if U is conditionally distributive over S when  neutral 
element e of the uninorm U is an idempotent element of S we have for all x , 
since  e<1 and S(e,e)=e, the following: 

[ ]1,0∈

  x=U(x,e)=U(x,S(e,e))=S(U(x,e),U(x,e))=S(x,x). 
Therefore each element from [0,1] is an idempotent of S, and so S must be a max 
operator.∎ 
 
 The second case is more complicated and in order to investigate it  we shall  
prove a sequence of lemmas. Firstly we present a lemma in which the ordinal sum 
structure for a continuous t-conorm simplifies considerablly. 
 



Lemma 1 Let U be a left-continuous uninorm with neutral element e ( )1,0∈  and let S 
be a continuous t-conorm for which e is not  an idempotent element. If  the pair (U,S) 
satisfies the condition (CD), then |A|=1. 
  
 Proof : Since the neutral element e is not an idempotent element of S then 
e  for some ( αα ea ,∈ ) A∈α . We will prove that each x  and each x  is 
idempotent of  S. We know that S(

αe≥ αa≤

ααα aaa =),  and S( ααα eee =),  hold. Assume that 
eα<1. The case when eα=1 is trivial. Since (CD) holds we have for all x  the 
following: 

[ ]1,0∈

  U(x,eα)=U(x,S(eα,eα))=S(U(x,eα),U(x,eα)). 
Therefore for each x in [0,1] U(x,eα) is an idempotent element for S. Now observe the 
continuous function U(x,eα) for x . It is a continuous increasing function from [e,1] 
into [e

e≥
α,1]. Thus each element from [eα,1] is an idempotent element of S. 

Using similar arguments we will show that each element x≤aα is an idempotent of S. 
Assume that  aα>0. The case when aα=0 is trivial. We  have because of  (CD) for all  x 
from [0,1] the following: 
  U(x,aα)= U(x,S(aα,aα))=S(U(x,aα),U(x,aα)) 
Therefore for all x from [0,1] U(x,aα) is an idempotent element of S. Now observe the 
continuous function U(x,aα) for x e≤ . It is a continuous increasing function from [0,e] 
into [0,aα]. Thus each element in [0,aα] is an idempotent of S. From the previous 
considerations we can conclude that |A|=1, i.e., S=(<a,b,S*>) where S* is a continuous 
Archimedean t-conorm.∎ 
 
Lemma 2  Let U be a left-continuous uninorm with neutral element e ( )1,0∈  and S be 
a continuous t-conorm for  which  e is not an idempotent element . If the pair (U,S) 
satisfies the condition (CD), then U(x,y) [ ]ba,∈  for all x,y [ ]ba,∈ , where a, b are from 
the previous Lemma 1 such that S=(<a,b,S*>). 
 
 Proof: We will prove that a,b are idempotent elements for U. From the 
representation of continuous t-conorm we know that S* is an Archimedean continuous 
t-conorm which is either strict or nilpotent. Firstly we consider the case when S* is 
strict.  
      (i) If  S* is strict then we have that S(e,e)<1 because e<1. Let us take the points 
b and e and apply  (CD) whence obtain the following: 
                   U(b,S(e,e))=S(U(b,e),U(b,e))=U(b,e)=b 
By induction we get for all n from N  
                     b= U(b,e)=U(b,  ))2( n

Se



Since , this together  with continuity of U on be
n
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)2(lim [ ]21,e , implies 

b=U(b,b) 
 Let us prove  now that U(a,a)=a. Similary as in the previous case we will take 
the points a and e and again apply  the condition (CD) whence obtain the following: 
      U(a,S(e,e))=S(U(a,e),U(a,e))=U(a,e)=a  and consequently we get 

U(a, )
)

2
1

(
Se =U(a,e)=a (see remark 3.5 in [3]). By induction we get for all n from N 
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U(a,a)=U(a,e)=a 
    (ii)  Let now S* be a nilpotent t-conorm and fix c=inf{x [ ] }1),(|1,0 =∈ xxS <1. 
Then immeadieately  we get S(b,b)=1=b. Therefore it remains only to show U(a.a)=a. 
 If  e<c then S(e,e)<1 and in the same manner as in the strict case we get 
U(a,a)=a. 
 If c≤e then for x<c holds S(x,x)<1 and applying (CD) on the points a and x 
we have the following: 
  U(a,S(x,x))=S(U(a,x),U(a,x))=U(a,x).  
When x  because of continuity of S and U on c→ [ ]2,0 e  we have  
  U(a,S(c,c))=U(a,1)=U(a,c). By induction we get  
   U(a,  for all n from N implying 
U(a,a)=U(a,1) . Opposite inequality is trivial because 
U(a,a) ,Therefore U(a,a)=a in this case too.∎ 

),())2( caUc
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 So far  we have seen that  when  (CD) is satisfied then  ordinal sum 
representation  for t-conorm S is simplfied because we have only one summand 
<a,b,S*>. Also we have showed that U(x,y) [ ]ba,∈  when x,y [ ]ba,∈ , i.e., uninorm U 
is compatibile with structure of  t-conorm S. 
 Now we can apply results from [4] 
 
Theorem 3 Let ( [ ] be a conditionally distributive semiring ),,1,0 SU
 (i) If S is strict t-conorm, i.e if it is generated by a bijective additive generator 
s:[0,1]→[0,∞], then U is generated by c·s for some constant c from (0,∞) and hence 

has the neutral element s )1(1

c
−  

 (ii) If S is a nilpotent t-conorm, i.e., if it has a (unique) additive generator s 
which can be seen as an increasingbijection s:[0,1]→[0,1], then U is a t-norm with 
multiplicative generator s. 
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