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Abstract: Generally in mathematics and its applications, some problems are 
becoming much easier if we can express them in, should we say, suitable 
framework. For instance, S 3  can be treated as model of Euclidian space, so we 
could use apparatus of analysis, algebra and model theory for solving particular 
problem in Euclidian geometry. On the other hand, some analytical, or 
algebraical problems became much easier if we can find their geometrical 
interpretation. Logical background of this method can be found in two different 
approaches: interpretation method, i.e. formal representation of one first order 
theory in another (in general case one formal system in another), and  category 
theory, where we exploit equivalence and existence of adjoint functors between 
certain categories. Our particular interest is application of these methods in 
automated reasoning. 
 

 

1 Introduction 

Various problems in mathematics and its application can be described and treated 
within different mathematical theories and concepts. Some of them are made to 
solve particular problems, which for centuries endured and remain unsolved. 
Marvellous example of this kind is Galois theory, arguably one of the uttermost 
achievements of men kind at all.  

Formal background of interpretation method is due to Gödel, thou method itself 
was informally used earlier (for instance to establish equiconsistence between the 
Euclidian and hyperbolic geometry). This method was introduced in his 
monumental paper on formal undecidability of  Principia Mathematica and related 



systems. Gödel succeeded to recursively1 interpret logical notions such as “to be a 
formula”, “to be a sentence”, “to be a proof”, “to be consistent” etc. within formal 
arithmetic2 PA (Peano arithmetic), and to prove that if PA is consistent, then this 
consistency cannot be shown in PA. Strictly speaking, Gödel constructed a 
sentence Con(PA) which asserts that theory PA is consistent and then showed the 
following: 

- If PA is consistent, then Con(PA) is not provable from PA; 

- If PA is ω-consistent, then ¬Con(PA) is not provable from PA; 

- PA is essentially incomplete, i.e. there is no recursive, consistent and complete 
extension of PA. 

Namely, interpretation method is formal representation of one first order theory 
into another. Thou much of interesting theories (at least for mathematicians) are 
undecidable, there are decidable fragments which can be used for automated 
theorem proving/ automated reasoning. Variety of algorithms and methods are 
proved to be useful here (such as syntax analysis and processing, tableau, 
resolution, quantifier elimination etc.). 

With the respect to the category theory, our interest also lies in the proof theory 
and its applications. Namely, we can refer to formulae (or sets of formulae) as 
objects and to inference proofs as morphisms between them. In this way we can 
construct a category related to some formal system, and then try to establish 
categorical equivalence (if not equivalence, then adjunction) between some other 
categories, such as Cartesian closed categories, λ-calculi categories, certain types 
of topological categories etc. For instance, some problems in graph theory can be 
solved by shifting to another category, such as λ-calculi, some topological 
categories etc. 

                                                           
1 Gödel's  recursive functions are the first formal system of computability , which later 

inspired Alan Turing to develop the  Turing machines and Alonso Church to develop 
the λ- calculus. 

2 Formal arithmetic PA is a first order theory in language LPA={+,·,',0,1} with following 
axioms: 

- "x(x'≠0) 
- "x"y(x'=y'Ø  x=y) 
-  "x(x+0=x) 
- "x"y(x+y'=(x+y)') 
- "x(x· 0=0) 
- "x"y (x· y'=(x· y)+x) 
- Let j(x,…) be an arbitrary formula in language LPA. Then universal closure of the 

sentence 
                                      j(0,…) ∧ "x(j(x,…)Ø  j(x',…))Ø  "xj(x,…))                                                                                             
                                     
is an axiom of PA. 
 



Some of research projects in the Group for Intelligent Systems are aimed on the 
quantifier elimination method and its applications. More details of this work are 
presented in [2], [4], [8] and [9]. Obviously we were curious if we could find a 
way to expand developed procedures in the broader class of theories and 
applications. One way to do this is to use interpretation method. That could also 
help to find more applications of decidable fragments of some undecidable 
theories. 

  

2 Definability 

Let L be a first order language (i.e. L may contain some constant, function and 
relation symbols, but L can also be an empty set) and let T be a theory of language 
L (i.e. set of some sentences, where sentence is a first order formula which every 
variable is bounded with some quantifier). 

A property is definable in theory T if it can be uniquely expressed (in T) by a first 
order formula of language L. Now we will give a strict definition for definability 
of constant, function and relation symbols: 

- Each formula j(x) of language L such that 

                                                      T ├ ∃1xj(x) 

can be used for definition of new constant symbol c in the following way: 

                                                     x=c⇔ defj(x). 

- Each formula j(x1, ..., xn, y) of language L such that 

                                         T├ "x1, … ,xn∃1y j(x1, … , xn, y) 

can be used for definition of new n-ary function symbol F in the following way: 

                                       y=F(x1,… , xn) ⇔ def j(x1,…, xn, y). 

- Each formula j(x1,…,xn) of language L can be used for definition of new n-ary 
relation symbol R in the following way: 

                                             R(x1,…,xn) ⇔ def j(x1,…, xn). 

Example 1. Let us show that each natural number n is definable in PA. To see 
that, let jn(x) be a formula 

                                                      x=n , 

where 1 =0’, 2 =0’’ etc. Now for every pair of natural numbers m and n we have 
that 



                                   PA¢m=n  if and only if m=n, 

so each formula jn(x) has the unique witness n. Thus we can (in PA) define each 
natural number n with n. � 

 

If T is a theory of fields of characteristic zero, then it is easy to see that each 
rational number is definable in T. Now let us state another example. 

Example 2. Let L={<} be a language of linear ordering and let T be a set of 

all sentences of language L which are true in the structure (O, <) where 

                                              N = {1,2,3,…}, 

is a set of all natural numbers and < is usual ordering of O. Then, every natural 

number is definable in T. To see that, for each natural number n let jn(x) be a 
formula 

       ∃x1,…,xn(⁄i≠jxi≠xj ∧ x1<x ∧ … ∧ xn<x ∧ "y(y<x Ø  y=x1 ∨ … ∨ y=xn)). 

Note that formula jn(x) asserts that x has exactly n predecessors. Thus, 

                                                    T├ ∃1x jn(x), 

since the only witness in (O,<) for jn(x) is the natural number n+1. To verify that 
1 is definable, note that 1 is the only witness for the formula 

                                                  "y(x ≤y) 

in the structure (O,<). � 

 

As an interesting contrast to the previous example we state the theory T*  which 
contains all sentences of the language L of linear ordering which are true in the 
structure ([ ,<), where 

                                              [  = {0,1,-1,2,-2,…}, 

is the set of all integers and < is usual ordering of integers. It can be shown that 
none of the integers is definable in T*. To gain definability, it is sufficient to add 
one constant symbol to the language L.  

3 Interpretation 

 

Let L and L* be first order languages, T be a theory of language L and T* be a 



theory in language L*. We say that language L is interpretable in a theory T* if 

following conditions hold: 

- There is an unary predicate U definable in T* such that 

                                                      T├ ∃x U(x). 

- For each constant symbol c of language L there is a  constant symbol c* 
definable in T* such that 

                                                      T*├ U(c*). 

- For each n-ary function symbol F of the language L there is an n-ary function 
symbol F* definable in T* such that 

               T*├ "x1,…,xn(U(x1) ∧ … ∧ U(xn) Ø  U(F(x1,…,xn)). 

- For each n-ary relation symbol R of language L there is an n-ary relation symbol 
R* definable in T*. 

In order to obtain the fundamental interpretation theorem, the following is needed: 

for a given formula j in a language L we are going to define a formula j* in a 
language L* by induction on the complexity of formula j as follows: 

- (t1=t2)* is the formula t1*=t2*, where ti are terms of language L; 

- (R(x1,…,xn))* is the formula R*(x1,…,xn), where R is n-ary relation symbol of 
language L; 

- (¬j)* is the formula ¬j*; 

- (j ∧ ψ)* is the formula j* ∧ ψ*; 

- (∃xj(x,…))* is the formula ∃x(U(x) ∧ j*(x,…)). 

We say that theory T is  interpretable in T* if there is an interpretation of the 
language L in theory T* such that for every nonlogical axiom j of T we have 
T*¢j*. 

Theorem. Let L and L* be a first order languages and let T and T* be a theories 
of languages L and L* respectively, such that T is interpretable in T*. Then, for 
each formula j of language L, if T¢j then T*¢ j*. � 

With next example we will illustrate the use of quantifier elimination in the 
interpretation method. 

Example 3. Let T be a recursive theory. Suitable theory T* should satisfy the 
following conditions: 

- There is a recursive interpretation of axioms of T into T* and there is a recursive 
interpretation of atomic formulae of T* into T; 

- T* admits the quantifier elimination and we have an effective procedure for it; 



- There is a recursive procedure for validity of quantifier free formulas in the 
theory T*. 

So, we have the following algorithm: 

input: formula j of the language L 

output: YES, if  T├ j; NO, otherwise 

step 1: Find an interpretation j* in language L* of a given formula j. 

step 2: Find a quantifier free formula ψ of the Language L* such that 

T* ├ j*↔ψ. 

step 3: Check the validity for ψ. If ψ is valid in T*, then the output is YES, 
otherwise  it is NO. 

Of course, the interpretation theorem guaranties the correctness of the algorithm 
stated above. 

Example 4. Here we are briefly going to discuss an interpretation of monadic 
calculus in ZFC theory (ZFC states for Zermelo-Frankel set theory together with 
the axiom of choice). The embedding of the monadic calculus in the set theory is 
quite natural: for instance, silogism Bocardo 

Some M are not P 

Every M rm is S 

Some S are not P 

can be expressed in ZFC as 

                                           M \ P ≠ 0 ∧ M Œ S Ø  S \ P ≠ 0, 

where 0 is abbreviation for empty set.  

To be more precise, we will define a monadic formula in ZFC by induction on 
complexity as follows: 

- Atomic formula is monadic formula; 

- Boolean combination j of monadic formulae is monadic formula if for no 
variables x, y and z, x∈y and y∈z are subformulas of j; 

- If j(x,…) is monadic formula and there is no variable y such that y∈x is a 

subformula of j, then ∃xj(x,…) and "xj(x,…) are also monadic formulae. 

It is obvious that the set of all monadic formulae in ZFC is recursive. If we 
combine this with effective procedure of quantifier elimination for the monadic 
calculus developed in GIS (see [2]), we obtain a theorem prover for monadic 
formulae in ZFC. � 



Example 5. Here we are going to put some light on the fact that theory ZFC 
cannot be interpreted in formal arithmetics PA (assuming that both of this theories 
are consistent). If we define ordinals and ordinal arithmetics in the usual way (see 
[6]), then we have that 

                                      ZFC├  (w , +, ÿ, S, 0,{0})£╞ PA. 

where w  is the least infinite ordinal, S(x)=x({x} and + and ÿ are respectively 
ordinal addition and multiplication. Thus 

                                               ZFC├ Con(PA). 

On the other hand, by the first Gödel incompleteness theorem we have that 

Con(PA) is not provable from PA, so by interpretation theorem we can conclude 
that ZFC cannot be interpreted in PA. � 

With next two examples we are going to illustrate the general interpretation 
method. 

Example 6. Let PR be a first order predicate calculus and let PC be a 
propositional calculus. We will give the sketch of a proof for consistency of PR. 

Namely, we are going to specify an interpretation of PR in PC in the following 
way: 

- Atomic formulae are interpreted as propositional letters; 

- Interpretation of Boolean combination of formulae is the same Boolean 
combination of interpretations of formulae; 

- Interpretation of the formula "xj is interpretation of j. 

In this way we can also interpret PR-proofs in PC-proofs. Now any proof of 
contradiction in PR we can translate to the proof of contradiction in PC. Since 
propositional calculus is consistent, we can conclude that the first order predicate 
calculus is also consistent. � 

Example 7. Decidability of monadic calculus and modal S5 calculus were proved 
very early (Skolem, Tua). Decidability for theory of Boolean algebras was proved 
by Tarski in 40’s. However interpretation based equivalences of these theories 
were studied in detail by  Žarko Mijajlović in his MS thesis in 1973. Mijajlović 
introduced effective interpretations (in linear time) between modal S5 calculus, 
monadic calculus without equality and universal sentences in theory of Boolean 
algebras. These theories were implemented in GIS several times in alternative 
design. 

Here we are going to briefly describe the interpretation of monadic calculus 
without equality in modal S5 calculus. Modal S5 calculus is propositional calculus 
with two additional unary operators: L (L(p) we interpret as “p is necessary”) and 



M (M(p) we interpret as “p is possible”). Beside propositional axioms, we have 
three additional axioms: 

- L(p) Ø  p (axiom of necessity); 

- L(p Ø  q) Ø  (L(p) Ø  L(q)); 

- M(p) Ø  L(M(p)). 

Rules of detachment are modus ponens j, 
ψ

ψϕϕ →, and rule of necessity 
)(ϕ

ϕ
L

. 

The following fact allows us to construct desirable interpretation:  Each monadic 
formula j with monadic predicates P1,…, Pn is equivalent (in monadic calculus) to 
Boolean combination y(q1,…, qn), where formula qi is some of predicates Pj or qi 
has a form 

                                               $x (Q1(x) ∧ …∧ Qn(x)), 

where Qi∈{P1,…, Pn}. In particular, reduced monadic formulas are formulas of 
type y(q1,…, qn). 

Now we will define the interpretation of reduced formula as follows: 

- Interpretation of P(x) is propositional letter p; 

- Interpretation of $x(P1(x) …∧ ∧  Pn(x)) is M(p1∧  …∧  pn); 

- Interpretation of Boolean combination is the same Boolean combination of 
adequate interpretations. 

It can be shown that reduced monadic formula j is theorem in monadic calculus if 
and only if its interpretation is theorem in modal S5 calculus. 

 

4 Categories 

 

 

For definition of the notion of category and related features we refer the reader to 
[7]. Let us state some basic examples of categories. 

- Category of sets: objects are sets, morphisms are functions and composition of 
morphisms is composition of functions; 

- Category of topological spaces: objects are topological spaces, morphisms are 
continuous functions and composition of morphisms is composition of functions; 



- Category of Abelian groups: objects are Abelian groups, morphisms are group 
homomorphisms and composition of morphisms is composition of functions; 

- Category induced with monoid (M,∏): the only object is ∏, morphisms are 
elements of M and composition of morphisms is ∏; 

- Category induced with certain formal theory: objects are formulae, morphisms 
are inference proofs and composition of morphisms is concatenation of proofs.  

Note that some categories could be a proper classes. However, without loss of 
generality we could restrain our argumentation to fragments which are sets. So, we 
will assume that all categories are small (i.e. they are not  proper classes). 

There are various applications of category theory. The essence of the method lies 
in  transition from one category in another via adequate functor. Usually we need 
category equivalence, or in more general case, adjunction between categories. 
With following example we want to illustrate application of the category theory in 
the proof theory. 

Example 8. As before, let w  be the least infinite ordinal (for strict definition see 
[6]). We will define a category O  as follows: 

- Objects are all finite ordinals (i.e. OO= w); 

- Morphisms are relations between finite ordinals. Thus, for arbitrary finite 
ordinals m and n the set of all morphisms from m to n is P(män); 

- Composition of morphisms is composition of relations. 

Now let X be an infinite set (for our purpose X will be a set of all propositional 
letters) such that  T – X (¨  stands for logical constant “true”). To 
simplify things, we will consider only conjunctive fragment of the 
intuitionistic calculus (with ¨T). So, set of formulae is the minimal 
superset of X ∪ {T} which is closed under the ∧  (i.e. under the 
conjunction). We have the following inference rules: 

- tA: A¢̈  (tautology) 

- 1A: A¢A  (identity) 

- p1: A B¢A (first projection) ∧

- p2: A B¢B (second projection) ∧

- If f : A → C (i.e. f is an inference proof from formula A to formula C) and              
g : B → D then (p1,p2): A  B ¢ C∧ ∧  D. 

As additional rules we have the following equalities among inference proofs: 

- h(gf)=(hg)f (here gf is concatenation of proofs f and g); 

- Let f : A → B. Then f1A=f and 1Bf=f; B



- p1(f,g)=f, p2(f,g)=g; 

- (p1h, p2h)=h; 

- (f,g)h=(fh, gh); 

- Let f : A → T. Then f = tA. 

In this way we actually defined the category L T∧ ¨(X). It can be shown that the 
functor F: L T∧ ¨(X) → NO  defined with 

- F(x) = F(T) = 1,  x∈X 

- F(A B)=|F(A) x F(B)| ∧
- Let p1: A∧ B¢→ A. Then F(p1):F(A)äF(B)ö F(A) is defined with F(p1)(x,y)=x; 

- Let p2: A∧ B → ¢B. Then F(p1):F(A)äF(B)ö F(B) is defined with 
F(p1)(x,y)= ; y

 

rphisms in O  is quite easy: we have to 
y of two subsets of m x n. � 
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