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Abstract: Fuzzy relation is fuzzy subset of finite Cartesian power of a given set, i.e. a

fuzzy set of n-tuples of n-elements of analyzed set. It is known that all laws of classical

sets algebra is not satisfied in the fuzzy set theory. Real relation (R-relation) is based

on real set (R-set) theory. R-set theory is a consistent generalization of classical set

theory, contrary to fuzzy set theory. In R-set theory range of membership function is

real interval [0, 1] as in the fuzzy set theory. The basic difference between R-set theory

and fuzzy set theory lies in the fact that all laws of classical set algebra are valid in

the R-set theory. As a consequence all fundamental properties of classical relations are

preserved in the generalized case - real relations.
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1 Introduction

Formally, a relation is a set - subset of finite Cartesian power of a given set.
Fuzzy relation (F-relation) is fuzzy set [1]. All known theories of fuzzy sets are
realization of multi-valued (MV) logics [2]. In MV logics are not preserved all
fundamental properties (logical laws) of classical logic. Consequence is that all
laws of set algebra are not preserved in fuzzy set theory.

In this paper is introduced real relation (R-relation). R-relation is based
on real set (R-set) theory. R-set theory is a consistent generalization of clas-
sical set theory, contrary to theories of fuzzy sets. The range of membership
function in R-set theory as in fuzzy set theory is a real interval [0, 1]. The
basic difference between R-set theory and fuzzy set theory lies in the treatment
of predicates (properties, relations etc.). In classical logic and/or classical set
theory value (of truth, or of memberships) is equivalent with predicate itself,
and in calculus values are enough. In classical case this presumption is correct
since Boolean algebra of predicates are homomorphically mapped in reduced
two values Boolean algebra. Fuzzy approach use same presumption as classical
approach.. Problem is in the fact that by mapping Boolean logic of predicates
in set with more them two elements cant be Boolean logic. So, treating the



values of membership functions of same predicate as predicate itself the nature
of predicate can be preserved in general case.

In the case of R-sets there are two levels: (a) symbolic (logical) deal with
predicates as a quality independent of value realization and this level is struc-
tured by Boolean algebra; and (b) valued level (non-logical) deal with convex
interpolations.. Since logical nature of R-set theory is a meter of symbolic level
with Boolean algebra, all laws of classical set algebra are valid in the R-set
theory and all fundamental properties of classical relations are preserved in the
R-relations. Since R-relations are generalization of relations, they have addi-
tional properties and capabilities, too.

In Section 2 basic notion of relation and fuzzy relation is given. Real relations
are explained and illustrated in Section 3.

2 Relation and fuzzy relation

2.1 Relation

Relation is a subset of a finite Cartesian power An = A× · · · ×A of a given set
A, i.e. a set of n-tuples (a1, ..., an) of n elements of A.

A subset is called an n-place, or an n-ary, relation on A. The number n
is called the rank, or type, of the relation R. A subset R ⊆ An is also called
an n-place, or n-ary, predicate on A. The notation R (a1, ..., an) signifies that
(a1, ..., an) ∈ R.

One-place relations are called properties. Two-place relations are called
binary, three-place F-relations are called ternary, etc.

The set An and the empty subset ∅ in An are called, respectively, the uni-
versal relation and the zero relation of rank n on An.

If R and P are n-place relations on A, then the following subsets of An will
also be n-place relations on A:

R ∪ P, R ∩ P, R′ = An \R, R \ P.

The set of all n-ary relations on A is a Boolean algebra relative to the
operations ∪,∩,′.

2.2 Fuzzy relation

Fuzzy relation (F-relation) is generalization of relation so that the rang of mem-
bership function is interval [0, 1]. F-relation is a fuzzy subset of a finite Cartesian
power An = A× · · · ×A of a given set A, i.e. a fuzzy set of n-tuples (a1, ..., an)
of n elements of A.

If R and P are n-place F-relations on A, then the following F-subsets of An

will also be n-place relations on A:

R ∪ P, R ∩ P, R′ = An \R, R \ P.



where:

(R ∪ P ) (a1, ..., an) = T (R (a1, ..., an) , P (a1, ..., an)) ,

(R ∪ P ) (a1, ..., an) = S (R (a1, ..., an) , P (a1, ..., an)) ,

R′ (a1, ..., an) = N (R (a1, ..., an)) ,

(R \ P ) (a1, ..., an) =
{

R (a1, ..., an)− P (a1, ..., an) , R− P > 0
0, R (a1, ..., an)− P (a1, ..., an) ≤ 0 ,

(a1, ..., an) ∈ R, P ⊆ An,

T and S are T -norm and S-norm (T -conorm) respectively and N generalized
negation.

The set of all n-ary F-relations on A is not a Boolean algebra relative to the
operations ∪,∩,′. As a consequence, laws of classical relation algebra are not
valid in fuzzy case. So, in general case, the results based on classical relations
couldn’t be generiliezed and/or fuzzifed directly.

3 Real relation

Real relation (R-relation) is consistent generalization of relation, contrary to
fuzzy relations. All laws of classical relation algebra are preserved in the case
of R-relations, of course with richer interpretations. The algebra of classical
relation and/or set-theoretic operations are based on truth functional principle
from classical logic. It means that the value characteristic function of combined
relation can be directly calculated by the values of characteristic function of
relation components

The R-relation theory is an interpretation of Syntactic Structured and Se-
mantic Convex (S3C) logic [3]. S3C logic is a consistent generalization of Boolean
logic, contrary to known MV logics.

The fundamental notions of the theory of R-relations are: (a) the universe of
discourses (set of objects, which can be in relations) and (b) relations (interac-
tion between objects of universe). R-relation (or a predicate) creates a R-set in
universe. A R-relation is primary or combined. A combined relation is a result
of set operations.

Theory of R-relation has two levels: (a) Symbolic: computing with quality
(nature) of relations and (b) Valued : computing with intensity (quantity) of
relations (occupied with the intensities of relation). Qualitatively aspects of
relations are meter of symbolic level, and algebra of relations on symbolic level
is Boolean algebra. Quantitatively aspect of relation intensities - value of inter-
action between elements in analyzed tuple of relation is a meter of valued level
and mathematical tool is convex interpolation.

3.1 Symbolic level: Boolean algebra

Characterization of a R-relation is a meter of symbolic (syntactic) level. A
characteristic is a set function - a logical structure of R-relation. The domain



of logical structure of a R-relation is a set of primary R-relations and all their
subsets including an empty set (power set of primary R-relations), and range
is a {0, 1}-valued set. Any R-relation (primary and/or combined) is uniquely
characterized by its logical structure. Logical structure is isomorphic mapping of
R-relations set into set of R-relation structures. Since algebra of R-relations (on
symbolic level) is Boolean algebra follows that algebra of R-relation structures
set is also Boolean algebra.

3.1.1 R-relation

• Constant R-relations are classical (a) universal relation 1 (or An) and (b) zero
relation 0 (or ∅); produce An and ∅ on the value (semantic) level, respectively.

• A primary n-ary R-relation R produced a primary R-subset on a valued
level, R ⊆ An. The set of all primary R-relations is the alphabet of primary
R-relations. We analyze only a finite alphabet Ω = {R1, ...., Rn}.

• A combined R-relation can be formed by using set operators (∩ intersec-
tion, ∪ union and c complement) and rules.

• Rules for forming well formed R-relations (wfr ) - are:
(a) Primary and constant R-relations are wfr ;
(b) If R and B are wfr-s then (R ∩B) , (R ∪B) , Rc are wfr-s ;
(c) There are no other wfr.
• Basic (atomic) R-relations bR (S) , S ∈ P (Ω) are defined by the following

expressions:

bR (S) =
⋂

Ri∈S

Ri

⋂

Rj∈Ω\S
Rc

j ;

S ∈ P (Ω) .

• Any R-relation R (R1, ..., Rn) (set function) can be expressed as a function
of basic R-relations in canonical union (disjunctive) form

R (R1, ..., Rn) =
⋃

S∈P(Ω)

R
(
RS

1 , ..., RS
n

)
bR (S)

where:

RS
i =

{
1 Ri ∈ S
0 Ri /∈ S

; S ∈ P (Ω) , i = 1, ..., n.

3.1.2 Structure of R-relation

The unique characteristic of wfr is their structure. A structure of wfr is a set
function:

s : P (Ω) → {0, 1} .

where: P (Ω) is a power set (a set of all subsets including an empty set) of
alphabet Ω - set of primary R-relations.



3.1.3 Structure of R-relation constants:

Definition 1: Structure functions of constant R-relations are the following set
functions:

s (1) (S) = 1 S ∈ P (Ω) ,

and
s (0) (S) = 0 S ∈ P (Ω) .

3.1.4 Structure of primary R-relation

Structure of primary R-relation is defined in the following way:
Definition 2: Structure function s of primary R-relation R ∈ Ω is the

following set function [4]:

s (R) (S) =
{

1 R ∈ S
0 R /∈ S

; S ∈ P (Ω) ;

where: P (Ω) is a partitive set of Ω - set of primary R-relations.

3.1.5 Structure of basic R-relation

The structure function of basic R-relation is a basic structure function (structure
for short). From the definition of basic R-relation bR (S) , S ∈ P (Ω) ; only one
component of basic structure is equal to 1 (all others are 0):

s (bR (S1)) (S2) =
{

1 S1 = S2

0 S1 6= S2
; S1, S2 ∈ P (Ω) .

In the case |Ω| = n, the number of basic R-relations is 2n.
Very important characteristics of basic R-relation structures s (bR (S)) , S ∈

P (Ω) ; are:
(a) distinctness:

s (bR (S1) ∩ bR (S2)) (S) = s (bR (S1)) (S) ∧ s (bR (S2)) (S)
= 0, S1 6= S2,

S1, S2, S ∈ P (Ω) ;

(b) compactness:
⋃

S∈P(Ω)

s (bR (S)) (Si) = 1, ∀Si ∈ P (Ω) .

3.1.6 Principle of structural functionality

The fundamental principle of S3C logic and as a consequence of the new ap-
proach is the principle of structural functionality. The principle of structural
functionality [4] says that the structures (values of structure components) of
compounded R-relations uniquely determine the structure (values of structure



components) of compound R-relation. This is achieved by defining the structure
function of connectives as follows:

¬
1 0
0 1

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

where: ∧ is the structure function of ∩; ∨ of ∪,and ¬ of c.
Domain of structure function of connectives is range of structural functions

(not truth values!)
Using this, each structure function s extends uniquely to a structure deter-

mination of all R-relations as follows:

s (Rc) (S) = ¬s (R) (S) ,

s (R1 ∩R2) (S) = (s (R1) (S) ∧ s (R2) (S)) ,

s (R1 ∪R2) (S) = (s (R1) (S) ∨ s (R2) (S)) ,

where: S ∈ P (Ω) .
Set of all R-relations, on symbolic level, generated by primary R-relations

Ω operators ∪,∩,c is Boolean algebra. Structure function isomorphically maps
R-relations into their structures. So, the set of structures of R-relations with
∨,∧,¬ is Boolean algebra, defined on symbolic level.

3.1.7 Structure of combined R-relation

Any R-relation R (R1, ..., Rn) can be described as a set function of basic R-
relations and its structure functions as follows:

R (R1, ..., Rn) =
⋃

S∈P(Ω)

s (R) (S)bR (S) .

The number of possible R-relations in the case |Ω| = n is 22n

.
After R-relations are structured on symbolic level the next step is quantita-

tive characterization of R-relations on valued level.

3.2 Valued level: convex interpolation

A fundamental notion on a valued level is the universe of discourses A, the
universe for short. The number of elements in the universe is finite. R-relation
R is real subset R ⊆ An of finite Cartesian power of the universe A. R-relation
is determined from valued point of view by intensities or values of R-relation
membership function, defined on Cartesian power of the universe of discourse.



3.2.1 Intensity of R-relation

Every element from the Cartesian power of the universe An has the intensity
of analyzed R-relation. Values of R-relation intensity in classical set theory is
from valued set {0, 1}, but in the most general case is from real set [0, 1]. Any
R-relation, from syntactic level, define corresponding set (classic and/or real)
on the power of the universe.

Intensities of universal R-relation 1 (or An) and zero R-relation 0 (or ∅)
are:

1 (a1, ..., an) ≡ 1, ∀ai ∈ A;
0 (a1, ..., an) ≡ 0, ∀ai ∈ A,

respectively.
Primary R-relation R ⊆ An and R ∈ Ω has components with intensities

from real interval [0, 1] :
R : An → [0, 1] .

The nature of primary R-relation define intensity of component - value of inter-
action of analyzed n-tuple.

For determining the intensities of elements (values of interaction of order el-
ements in n-tuples) of combined R-relations we have to introduce basic (atomic)
functions.

3.2.2 Generalized product

A basic function defines the intensities (values of interaction of order elements
in n-tuples) of basic R-relation. For purpose of definition of basic function we
first define the generalized product ⊗.

Definition 4: A generalized n−product is a binary operation
⊗

(n) : [0, 1]2 →
[0, 1] , such that for all a1, ..., an ∈ [0, 1] the following five axioms hold: 1.com-
mutativity; 2. associativity; 3. monotonicity ; 4. boundary condition (definition
of t-norm [5] and new 5. non-negativity condition:

∑

A∈P(Ω\S)

(−1)|A|
⊗

ai∈S∪A

ai ≥ 0 ∀S ∈ P (Ω) .

where: Ω = {a1, ..., an} .

3.2.3 Basic function

Basic R-functions bR (S) :An → [0, 1] , S ∈ P (Ω) are defined in the following
way:

Definition 5: A basic (atomic) R-function is:

bR (S) (a1, ..., an) =
∑

R∈P(Ω\S)

(−1)|R|
⊗

Ri∈S∪R

Ri (a1, ..., an)



where: S ∈ P (Ω) , a1, ..., an ∈ A and
⊗

is the operator of generalized product.
The characteristics of basic functions are:
(a) The sum of values of basic functions is identical to 1:

∑

S∈P(Ω)

bR (S) (a1, ..., an) = 1; ∀a1, ..., an ∈ A.

(b) The intensity of intersection of two different basic R-relations is identical
to 0:

(bR (Si) ∩ bR (Sj)) (a1, ..., an) = 0; ∀a1, ..., an ∈ A,

where: Si 6= Sj and Si, Sj ∈ P (Ω) .

3.2.4 Intensity of combined R-relation

A combined R-relation in a general case can be described by the structure of
R-relation and basic functions:

R (R1, ..., Rn) =
⋃

S∈P(Ω)

s (R) (S)bR (S) .

Intensity of combined R-relation, R (R1, ..., Rn) : An → [0, 1] , in tuple (a1, ..., an)
is the superposition of intensities for the same tuple of relevant basic R-relations,
determined by its structural functions:

R (R1, ..., Rn) (a1, ..., an) =
∑

S∈P(Ω)

s (R) (S)bR (S) (a1, ..., an) ,

where: a1, ..., an ∈ A.

4 Example: Constructing real preference

structures

(As a consequence of consistencies of S3C fuzzy logic in the Boolean means,
the generalized theory of sets based on this logic has all basic properties of set
operations as classical set theory.

The application of S3C logic for fuzzy set operations is illustrated on the
fuzzy preference structures. Contrary to other approaches to the fuzzy pref-
erence structures [7], fuzzification (generalization) of the classical preference
structure, based on the new logic and/or new fuzzy sets theory is straightaway.)

Preference structures are very important notions in the aria of Decision
Making (DM).



4.1 Preference structures as a classical relations

Consider a set of alternatives A and suppose that a decision maker wants to
judge them by pairwise comparison using fuzzy binary relations (P, I, J), where:
the strict preference relation P, the indifference relation I and the incompara-
bility relation J. For any (a, b) ∈ A2, we classify:

(a, b) ∈ P ⇔ DM prefers a to b;
(a, b) ∈ I ⇔ a to b are indifferent to DM;
(a, b) ∈ J ⇔ DM is unable to compare a and b.
The triplet (P, I, J) defined above satisfies the conditions formulated in the

following definition of preference structure.
Definition 6: [6] A preference structure on A is a triplet (P, I, J) of binary

relations in A that satisfy:
(P1) P is irreflexive, I is reflexive and J is irreflexive;
(P2) P is asymmetrical, I is symmetrical and J is symmetrical;
(P3) P∩I=∅, P∩J=∅ and I∩J=∅;
(P4) P∪P t∪I∪J=A2.

Condition (P4) is called the completeness condition and this condition can
be written equivalently in at least eight different ways:

(1) co (P ∪ I) = P t ∪ J ;
(2) co (P ∪ J) = P t ∪ I;
(3) co (P ∪ P t) = I ∪ J ;
(4) coP t ∩ coI ∩ coJ = P ;
(5) coP ∩ coI ∩ coJ = P t;
(6) coP ∩ coP t ∩ coJ = I;
(7) coP ∩ coP t ∩ coI = J ;
(8) P ∪ P t ∪ I ∪ J = A2.
It is possible to associate a single reflexive relation to any preference structure

so that it completely characterizes this structure. The binary relation

R = P ∪ I

is called the large preference relation of a given preference structure (P, I, J) ;
R is always reflexive. Conversely, given a reflexive binary relation R in A, we
can construct a preference structure on A as follows.

Proposition 1: [6] Consider a reflexive binary relation R in A. The triplet
(P, I, J) of binary relations in A constructed as follows:
(i) P = R ∩ coRt;
(ii) I = R ∩Rt;
(iii) J = coR ∩ coRt,
is a preference structure on A such that R = P ∪ I.

Any preference structure can be reconstructed from its large preference rela-
tion in the above way. For this reason, the large preference relation is sometimes
called the characteristic relation.

Proposition 2: [6] Consider a preference structure (P, I, J) on A and its
large preference relation R. Then it holds that:

(P, I, J) =
(
R ∩ coRt, R ∩Rt, coR ∩ coRt

)
.



It is possible to associate a single reflexive relation R to any R-preference
structure (P, I, J) so that it completely characterizes this structure.

Because fuzzy relations allow expressing degrees of preference, indifference
or incomparability, it is very natural that fuzzy relation have been heavily in-
volved in preference models [7]. Study of fuzzy preference structures has long
tradition ([7]). Having at hand the classical concept of preference structures [8],
one tries to fuzzify it in such a way that the most important classical charac-
terizations fined a fuzzy counterpart. The study of fuzzy preference structures,
is an interesting exception to this rule [7], it means that fuzzy results is not
possible as a direct generalization (fuzzification) of classical results.

Contrary to fuzzy approach, by using R-relations classical result is gener-
alized direct. This is the consequence of the fact that all fundamental char-
acteristics of classical relations (or classical sets) are preserved in the case of
R-relations.

4.2 Preference structures as R-relations

The binary R-relation R = P ∪ I is called the large preference R-relation of
(P, I, J) ; R is always reflexive. Conversely, given a reflexive binary relation R
in A, we can construct a preference structure on A as follows.

Proposition 3: Consider a reflexive binary R-relation R in A. The R-
triplet (P, I, J) of binary R-relations in A constructed as follows:
(i) P = R ∩ coRt;
(ii) I = R ∩Rt;
(iii) J = coR ∩ coRt,
is a R-preference structure on A such that R = P ∪ I.

Proof : Let ⊗ = {R, Rt} be an alphabet (set of primary R-relations) and
P (Ω) = {∅, R,Rt, {R, Rt}} corresponding power set . Then the logical structure
of binary R-relation R and Rt are set functions:

s (R) : P (Ω) → {0, 1}
given in the following table:

S s (R) (S) s (Rt) (S)
∅ 0 0
R 1 0
Rt 0 1

{R,Rt} 1 1

and logical structures of its negations s (coR) (S) = 1− s (R) (S) ; S ∈ P (Ω) :

S s (coR) (S) s (coRt) (S)
∅ 1 1
R 0 1
Rt 1 0

{R, Rt} 0 0



and since I = R ∩ Rt; P = R ∩ coRt; P t = Rt ∩ coR and J = coR ∩ coRt,
logical structures of I, P, P t and J ,based on structural functionality principle,
are:

S s (S) (I) s (S) (P t)
∅ 0 0
R 0 0
Rt 0 1

{R, Rt} 1 0

,

S s (S) (P ) s (S) (J)
∅ 0 1
R 1 0
Rt 0 0

{R,Rt} 0 0

.

It is clear that J (a, b) , P (a, b) , P t (a, b) , I (a, b) are basic (atomic) R-
relation functions:

J (a, b) = bR (∅) (a, b) ,

P (a, b) = bR (R) (a, b) ,

P t (a, b) = bR
(
Rt

)
(a, b) ,

I (a, b) = bR
({

R,Rt
})

(a, b)

or:

J (a, b) = 1−R (a, b)−R (b, a) + R (a, b)⊗R (b, a)
P (a, b) = R (a, b)−R (a, b)⊗R (b, a)
P t (a, b) = P (b, a) = R (b, a)−R (a, b)⊗R (b, a)
I (a, b) = R (a, b)⊗R (b, a)

.

It is clear that:

P (a, b) + P t (a, b) + I (a, b) + J (a, b) = 1; ∀a, b ∈ A

or:
(
P ∪ P t ∪ I ∪ J

)
(a, b) = 1, ∀ (a, b) ∈ A2,

P ∪ P t ∪ I ∪ J = A2.

This condition can be written equivalently in eight different ways too as a con-
sequence of the following identities:

s (co (P ∪ I)) (S) = s
(
P t ∪ J

)
(S) ;

s (co (P ∪ J)) (S) = s
(
P t ∪ I

)
(S) ;

s
(
co

(
P ∪ P t

))
(S) = s (I ∪ J) (S) ;



s
(
coP t ∩ coI ∩ coJ

)
(S) = s (P ) (S) ;

s (coP ∩ coI ∩ coJ) (S) = s
(
P t

)
(S) ;

s
(
coP ∩ coP t ∩ coJ

)
(S) = s (I) (S) ;

s
(
coP ∩ coP t ∩ coI

)
(S) = s (J) (S) ;

s
(
P ∪ P t ∪ I ∪ J

)
(S) = s (A) (S) ;

S ∈ P (Ω) .

5 Conclusion

R-set theory is a consistent generalization of classical set theory, contrary to
theory of fuzzy sets. The basic difference between real set theory and fuzzy set
theory lies in the fact that all laws of classical set algebra are valid in the real set
theory. Since R-relations are generalization of relations, they have additional
properties and capabilities, too.
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