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Abstract: The large deviation theory is a tool for asymptotic computation of very

small probabilities. It is used for study of the convergence of "very small" probabili-

ties. We shall give an short overwiev of some approaches of large deviation theory,

and we shall consider the large deviation convergence of a sequence of generated

pseudo-measures to sup-decomposable measure.
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1 Introduction

Much of the credit for the modern theory of large deviations and its various

applications goes to S.R.S. Varadhan, Donsker, Freidlin i Wentzell (see [1]

and [2]). This theory has found many applications in information theory,

coding theory, image processing, statistical mechanics, �nite state Markov

chains, etc. (see [1], [2], [9]). The basic approach is based on the probability

theory. The purpose of large deviation theory is characterization of the limit

behavior of family of probability measures f�"g">0 as "! 0.

Let X be a topological space (for example, Polish space), let BX be a

completed Borel �-algebra on X , and let fP"g">0 be a family of probabil-

ity measures on (X ;BX ). The family fP"g">0 satis�es the large deviation

principle (LDP for short) with a rate function I : X ! [0;1] (i.e. lower

semicontinuous function I) if for all A 2 BX

� inf
x2

Æ

A

I(x) � lim inf
"!0+

" lnP"(A) � lim sup
"!0+

" lnP"(A) � � inf
x2A

I(x); (1)

where
Æ

A and A are interior and closure of A respectively. If the rate function

exists, it is uniquely determined. Main tasks are:



1. establishing necessary and/or suÆcient conditions for convergence, i.e.

for existence of rate function,

2. developing technics for computing the rate function.

Theorems of Sanov, Cram�er, G�artner-Ellis, etc. present the basic results in

the theory of LDP (see [1] and [2]). In the section 2 we repeat, for the sake

of completeness, the basic de�nition of the large deviation convergence for

the family of usual probabilities and idempotent probability as the limit, and

the theorem of Portmanteau. In the section 3 we present the convergence

results from [4] and three theorems on sup-integral related to the results of

[7]. In the section 4 we introduce a large deviation principle for the sequence

of �-measures; also, we give one characterization of this large deviation con-

vergence.

2 Preliminaries

The theory of non-additive measures (see [3], [6], [7]) also take a part in

the investigation of the large deviation convergence. One of the approaches

is studying the convergence of the family of usual probability measures to

idempotent sup-measure as it is described bellow (see [7]). Let X be a Tihonov

topological space with Borel �-algebra BX . Let we denote R+ = [0;1), let

F be a collection of closed subsets of X , and let C+
b
(X ), C

+

b (X ) and C
+
b
(X )

denote the respective sets of continuous, bounded R
+ -valued functions on

X , upper semi-continuous, bounded R
+ -valued functions on X , and lower

semi-continuous, bounded R+ -valued functions on X ,
Let � be a directed set, let P�, � 2 � be a net (i.e. generalized sequence) of

probability measures on (X ;BX ), let r�, � 2 � be a net of real numbers with

properties r� > 1, � 2 � and lim
�2�

r� =1. Finally, let � be an F-idempotent

probability measure on X . Denote kfk� =

0
@Z
X

f
r�dP�

1
A

1=r�

.

De�nition 1 The net P�, � 2 � large deviation converge at rate r�, � 2 �

to � (LD converge, for short) if for all f 2 C
+
b
(X )

lim
�2�

kfk� =
_
X

fd�:

If the limit value exists, it is uniquely determined. The theorem of Portman-

teau (see [7]) establishes some equivalent statements for LD convergence.

Theorem 1 (Portmanteau) The following conditions are equivalent:

(1) P�, � 2 � LD converge at rate r�, � 2 � to �.

(2) (2.a) 8g 2 C
+
b
(X ); lim inf

�2�
kgk� �

_
X

gd�,



(2.b) 8f 2 C
+

b (X ); lim sup
�2�

kfk� �
_
X

fd�.

(3) (3.a) for any open set G � X is satis�ed

lim inf
�2�

P
1=r�
�

(G) � �(G);

(3.b) for any closed set F � X is satis�ed

lim sup
�2�

P
1=r�
�

(F ) � �(F ):

3 Pseudo-operations and convergence of gene-

rated measures and integrals

In this section we shall present some pseudo-analysis notions and results (see

[3], [6] and [4]). Let [a; b] � [�1;1] (in some cases semiclosed subintervals

are taken), � and � binary operations on [a; b], and let � be a total order on

[a; b].

De�nition 2 The triple ([a; b];�;�) is called semiring if

(a) � (pseudo-addition) is associative, commutative, nondecreasing w.r.t.

� operation with neutral (zero) element 0 (usually, 0 is either a or b),

(b) � (pseudo-multiplication) is associative, commutative, positively non-

decreasing w.r.t. � operation (8x; y; z 2 [a; b]; (x � y ^ 0 � z) )
x� z � y � z) with neutral (unit) element 1,

(c) (c.1) 8x 2 [a; b];0� x = 0,

(c.2) � is distributive w.r.t. �.

There are three important types of semirings.

(I) The � is idempotent operation (� = sup or � = inf), and � is not,

(II) both of � and � are generated by strictly monotone and continuous

function g : [a; b]! [0;1] in the following sense:

x� y = g
�1(g(x) + g(y)), x� y = g

�1(g(x) � g(y)),

(in this case we have g(0) = 0 and g(1) = 1)

(III) both of � and � are idempotent (([a; b];�;�) = ([a; b]; sup; inf) or

([a; b];�;�) = ([a; b]; inf ; sup)).

In the case II, by Acz�el's representation theorem, for each strictly in-

creasing � there exists a strictly monotone surjective function (generator)

g : [a; b]! [0;1] for � such that x � y = g
�1(g(x) + g(y)) and g(0) = 0. If

0 = a, then g is increasing generator and g(a) = 0, g(b) = 1, and g is an

isomorphism between ([a; b];�) and ([0;1];+). For 0 = b, the situation is



opposite. Then, pseudo-multiplication de�ned by x � y = g
�1(g(x) � g(y)) is

only one such that ([a; b];�;�) is semiring (convention 1 � 0 = 0 is used).

More about notions of measures with values in semiring ([a; b];�;�) (�-
decomposable measures) and construction of corresponding pseudo-integral

can be found in [3] and [6].

Let ([a; b];�;�) be a semiring of type II with generator g : [a; b]! [0;1].

As it is shown in [4], for � 2 (0;1) function g
� is generator for the semiring

([a; b];��;��) with x��y = (g�)�1(g�(x)+g�(y)) and x��y = (g�)�1(g�(x)�
g
�(y)) = x � y. Hence ([a; b];��;��) = ([a; b];��;�). The following three

theorems proved in [4] show that: (1) the semiring of type I can be obtained

as a limit of family of g�-generated semirings ([a; b];��;��) (where �� = �),
(2) decomposable measure based on idempotent pseudo-addition with a con-

tinuous density can be obtained as a limit of family of decomposable mea-

sures m� based on generated pseudo-additions, (3) the pseudo-integral based

on semiring ([a; b]; sup;�) with � generated by g and on sup-decomposable

measure with a continuous density is a limit of family of g-integrals.

Theorem 2 Let g : [a; b] ! [0;1] be a strictly decreasing generator of the

semiring ([a; b];�;�) of the type II and g
� the function g on the power � 2

(0;1). Then g
� is a generator of the semiring ([a; b];��;�) and for every

" > 0 and every (x; y) 2 [a; b]2 there exists �0 such that jx�� y� inf(x; y)j < "

for all � � �0. For g increasing, the same result holds for sup.

Denote by B[0;1] the �-algebra of Borel subsets of the interval [0;1], and

denote by � the usual Lebesgue measure on R.

Remark 1 If m is a �-decomposable measure, where � is generated by g,

then � = g Æm is a �-additive measure, and m = g
�1 Æ � holds.

Theorem 3 Let m be a sup-decomposable measure on ([0;1];B[0;1]), where

m(A) = esssup
�

f'(x) j x 2 Ag, where ' : [0;1]! [0;1] is a continuous den-

sity. Then for any generator g there exists a family fm�g of ��-decomposable

measures on ([0;1];B[0;1]), where �� is generated by g
�, � 2 (0;1), such

that lim
�!1

m� = m (i.e. lim
�!1

m�(A) = m(A), for all A 2 B[0;1]).

Theorem 4 Let ([0;1]; sup;�) be a semiring with � generated by generator

g. Let m be the same as in the theorem 3. Then there exists a family fm�g
of ��-decomposable measures, where �� is generated by g�, � 2 (0;1), such

that for every continuous function f : [0;1]! [0;1]
supZ

f � dm = lim
�!1

��Z
f � dm� = lim

�!1

�
g
�1
���Z

(g� Æ f)� dx

�
:

For the sake of completeness, some properties of �-�-measures and ap-

propriate integrals necessary for further consideration will be given (see [6],

chapters 2 and 8). Let m be an �-�-measure on 
 with values in the semiring



([0;1];�;�), such that m(
) <1. We adopt the convention1� 0 = 0. Let

�A : 
 ! [0;1] denotes pseudo-characteristic function of a set A � 
, i.e.

�A(x) =

�
0 ; x 62 A

1 ; x 2 A
.

Theorem 5 Let m be a �-�-decomposable measure. For any c 2 [0;1], any

measurable A � 
, and any bounded measurable functions f : 
 ! [0;1)

and g : 
! [0;1) is satis�ed

1. m(A) =

�Z



�A(x)� dm,

2.

�Z



(c� f)� dm = c�

�Z



f � dm,

3.

�Z



(f � g)� dm =

�Z



f � dm�

�Z



g � dm,

4. f � g )

�Z



f � dm �

�Z



g � dm.

Theorem 6 For the sup-measure m and a family of functions fj : 
 !
[0;1), j 2 J holds

supZ



(sup
j2J

fj)� dm = sup
j2J

supZ



fj � dm:

Let F be a collection of all closed subsets of [0;1]. Analogously as in theorem

1.7.7. in [7], for the sup-integral based on semiring ([0;1]; sup;�) with �
generated by continuous function g, the following theorem holds.

Theorem 7 Let m be a [0;1]-valued, completely maxitive, F-smooth sup-

measure on [0;1], i.e. m(;) = 0, m(
[
j2J

Aj) = sup
j2J

m(Aj) for every family

Aj , j 2 J of measurable sets Aj , and m(
\
n2N

Fn) = inf
n2N

m(Fn) for every

decreasing sequence Fn, n 2 N of elements of F . Then, for every family of

functions fj : [0;1]! [0;1), j 2 J closed under formation of minimums is

satis�ed
supZ



(inf
j2J

fj)� dm = inf
j2J

supZ



fj � dm;

where is � generated by continuous function g.



4 Large deviation convergence of �-�-measu-

res at rate g � rn

Motivated by theorems 3 and 4, we shall now consider the convergence of

�-�rn-decomposable measures mn on [0;1] with property mn([0;1]) = 1 to

the sup-decomposable measure m on [0;1] with property m([0;1]) = 1, in

the sense of large deviation principle (see [5], [3] and [6]).

Denote by B[0;1] the Borel �-algebra of subsets of [0;1] (with usual topol-

ogy on [0;1]). Let O and F denote families of open and closed sets in [0;1]

respectively.

Let I = ([0;1];�;�) be a semiring of type II with � and � generated by

continuous, strictly increasing function g : [0;1] ! [0;1], so that g(0) = 0

and g(1) = 1, where 0 and 1 are neutral elements for � and � respectively.

Let S = ([0;1]; sup;�) be a semiring with same operation � as in semir-

ing I (and 0 is also the neutral element for sup). Let m : B[0;1] ! [0;1] be a

completely maxitive, F-smooth sup-measure on [0;1] (see theorem 7) with

property m([0;1]) = 1. Let rn, n 2 N be a sequence of real numbers greater

than 1 satisfying lim
n!1

rn =1. According the section 3, grn is a generator of

the semiring ([0;1];�rn ;�).
Let mn, n 2 N be a sequence of �-�rn-decomposable measures on the

measure space ([0;1];B[0;1]) with property mn([0;1]) = 1, i.e.

mn(;) = 0,

mn([0;1]) = 1,

mn(
[
i2N

Ai) =
M

rn

i2N

mn(Ai) for any collection of pairwise disjoint sets

Ai 2 B[0;1], i 2 N.

De�nition 3 The sequence mn, n 2 N large deviation converge at rate g�rn
to m (LD converge, for short) if for all f 2 C

+
b
(R+ ) is satis�ed

lim
n!1

�rnZ
[0;1]

f � dmn =

supZ
[0;1]

f � dm: (2)

Large deviation convergence will be denoted as mn

ld
!

g�rn
m, or mn

ld
!m shortly

in the case when there is no confusion about the rate of convergence. The

phrase "large deviation" will be shortly denoted as LD.

Remark 2 If the limit value (2) exists, it is uniquely determined.

We adopt the notation: kfkg��rn =

�rnZ
[0;1]

f � dmn.

Theorem 8 If the sequence mn, n 2 N of �rn-decomposable measures LD

converge at rate g � rn to sup-decomposable measure m, then:



(a) for arbitrary open set O � [0;1] holds

lim inf
n!1

mn(O) � m(O); (3)

(b) for arbitrary closed set F � [0;1] holds

lim sup
n!1

mn(F ) � m(F ): (4)

Considering theorem 1, some questions are imposed.

Problem 1 Is the converse of theorem 8 true?

Problem 2 Is it true that inequalities (3) and (4) implies

(A) for arbitrary h 2 C
+
b
([0;1]) holds

lim inf
n!1

khkg�rn �

supZ
[0;1]

h� dm;

(B) for arbitrary f 2 C
+

b ([0;1]) holds

lim inf
n!1

kfkg�rn �

supZ
[0;1]

f � dm;

or under which additional conditions is it satis�ed, and is the converse true?
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