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GIS (Group for Intelligent Systems), Faculty of Mathematics, University of Belgrade,

www.gisss.com, email : info@gisss.com

Abstract: In this paper we will explain some basic notions related to quantifier

elimination in the first order theories. We will give algorithms for quantifier elimina-

tion in theories of dense linear orders and algebraically closed fields. At the end, we

will see some applications of quantifier elimination in ACF. This article is the part

of our long-range research, in GIS, on quantifier elimination.

1 Introduction

First we list basic definitions and well-known theorems, which are of impor-
tance for quantifier elimination; the sketches of the proofs are included if they
are illustrative and important for the comprehension of considered problems.

The language L is recursive if the set of codes for symbols from L is recur-
sive. The first order theory T is recursive if the set of codes for axioms for T
is recursive. An L–theory T is complete if for every sentence φ in language L
the following holds:

T ` φ or T ` ¬φ .

For each theory T arises question of its decidability, i.e. existence of algo-
rithm which for given φ ∈ SentL gives an answer whether T ` φ or T 6` φ. In
the case of a recursive complete theory in a recursive language, the answer is
affirmative.
Definition 1: A theory T of language L admits quantifier elimination if for
every φ(v) ∈ ForL there is a quantifier free formula ψ(v) such that

T ` ∀v(φ(v) ↔ ψ(v))

Every formula is equivalent to its prenex normal form

Q1x1 . . . Qnxnϕ(x1, . . . , xn, y1, . . . , ym)

where Qi ∈ {∀, ∃} and ϕ is a formula without quantifiers in DNF; formula
of the form ∀xϕ is equivalent to ¬∃x¬ϕ; ∃x(ϕ ∨ ψ) ↔ ∃xϕ ∨ ∃xψ is a valid
formula. Using previous three facts we see that an L–theory T admits quantifier
elimination if and only if for every L–formula of the form ∃xϕ(y, x), where ϕ
is a conjunction of atomic formulas and negations of atomic formulas, exists
T -equivalent quantifier free formula ψ(y).



Specification : general algorithm for quantifier elimination in theory T
Input : formula ϕ in language L of T
Output : quantifier free formula ψ which is T − equivalent to ϕ
convert ϕ to prenex normal form Q1x1 . . . Qnxnχ(x1, . . . , xn, y1, . . . , ym)
i := n
while i > 0 do

if Qi is ∀ replace Qixiχi with ¬∃xi¬χi

transform the matrix of the formula to DNF
let the existential quantifier pass through disjunction
eliminate existential quantifier using the specific algorithm for theory T
i := i− 1

end
end

There are several tests for checking whether the given theory has quantifier
elimination or not. Using appropriate tests we can prove that theories DLO and
ACF 1 have quantifier elimination. Also, making a back-and-forth construction
we show that DLO is ℵ0-categorical 2; ACFp is κ-categorical for every κ > ℵ1,
because algebraically closed field of transcendence degree κ has κ+ℵ0 elements
and two algebraically closed fields are isomorphic if and only if they have the
same characteristic and transcendence degree over the basic field Zp or Q.
Theories DLO and ACFp don’t have finite models and are κ-categorical for some
infinite κ, so Vaught’s test implies their completeness; now we can conclude
that these theories are decidable as recursive complete theories in recursive
languages.

By the following theorem we can prove the existence of algorithms for quan-
tifier elimination in DLO and ACFp:

Theorem 1: Suppose that T is a decidable theory which admits quantifier
elimination. Then there is an algorithm which for given formula φ finds T–
equivalent formula ψ without quantifiers.

Proof. Let φ has n free variables and let (ψi)i∈N is an effective enumeration
of all quantifier free formulas in language L with n free variables. Since T
is decidable, there is an algorithm which decides whether T ` φ ↔ ψ1 or
T 6` φ ↔ ψ1. If not T ` φ ↔ ψ1, we go forth on ψ2 etc. The described
procedure will halt because T has quantifier elimination. ¤

In next two sections we will give concrete algorithms for these two theories.
1See sections 2 and 3 for details about DLO and ACF
2Theory T is κ-categorical for an infinite cardinal κ if any two models of T of cardinality

κ are isomorphic



2 An algorithm for quantifier elimination in DLO

The language of the theory of dense linear orders contains just one binary
relation symbol <. The axioms are:

∀x¬(x < x)
∀x∀y∀z((x < y ∧ y < z) → x < z)
∀x∀y(x < y ∨ x = y ∨ y < x)
∀x∀y(x < y → ∃z(x < z < y))
∀x∃y∃z(y < x < z)

The first three axioms are axioms for linear orders. As we have seen, it is
sufficient to eliminate the quantifiers in the formula of the form ∃xϕ, where ϕ
is a conjunction of atomic formulas and negations of atomic formulas. In this
specific theory we can replace ¬x < y with y < x ∨ y = x, and ¬x = y with
x < y ∨ y < x; with obtained formula we proceed as described in introduction.
Now, we give an algorithm for quantifier elimination in this theory:

Specification : algorithm eqDLO(ψ, n) for elimination of quantifiers in DLO
Input : formula ψ which is of the form ∃x(a1 ∧ . . . ∧ an), where ai are

atomic formulas and n is the lenght of conjuction
Output : formula ϕ without quantifiers equivalent to ψ
if n = 1 and ψ ≡ ∃x(y < z)
{ if y = x and z = x {ϕ := false; break; }

if y 6= x and z 6= x {ϕ := y < z; break; }
if (y = x and z 6= x) or (y 6= x and z = x) {ϕ := true; break; }

}
if n = 1 and ψ ≡ ∃x(y = z)
{ if y 6= x and z 6= x {ϕ := y = z; break; }

ϕ := true; break;
}

if for some i ai ≡ y < z ( y, z 6= x)
{ψ1 := ∃x(a1 ∧ . . . ∧ ai−1 ∧ ai+1 ∧ . . . ∧ an);
ϕ1 := eqDLO(ψ1, n− 1);
ϕ := ai ∧ ϕ1;
}

if for some i ai ≡ y = z ( y, z 6= x)
{ψ1 := ∃x(a1 ∧ . . . ∧ ai−1 ∧ ai+1 ∧ . . . ∧ an);
ϕ1 := eqDLO(ψ1, n− 1);
ϕ := ai ∧ ϕ1;
}

if for some i ai ≡ x < x ϕ := false;
if for some i ai ≡ x = x
{ψ1 := ∃x(a1 ∧ . . . ∧ ai−1 ∧ ai+1 ∧ . . . ∧ an);



ϕ := eqDLO(ψ1, n− 1);
}

if ϕ is of the form ∃x(x < y1 ∧ . . . ∧ x < yk∧
u1 < x ∧ . . . ∧ ul < x ∧ x = v1 ∧ . . . ∧ x = vm)

{
if k > 1
{ ψ1 := ∃x(x < y1 ∧ x < y3 ∧ . . . ∧ x = vm);

ψ2 := ∃x(x < y2 ∧ x < y3 ∧ . . . ∧ x = vm);
ϕ1 := eqDLO(ψ1, n− 1);
ϕ2 := eqDLO(ψ2, n− 1);
ϕ := (y1 < y2 ∧ ϕ1) ∨ (¬(y1 < y2) ∧ ϕ2);

}
if l > 1
{ ψ1 := ∃x(x < y1 ∧ . . . ∧ u2 < x ∧ u3 < x ∧ . . . ∧ x = vm);

ψ2 := ∃x(x < y1 ∧ . . . ∧ u1 < x ∧ u3 < x ∧ . . . ∧ x = vm);

ϕ1 := eqDLO(ψ1, n− 1);
ϕ2 := eqDLO(ψ2, n− 1);
ϕ := (u1 < u2 ∧ ϕ1) ∨ (¬(u1 < u2) ∧ ϕ2);

if m > 1
{ ψ1 := ∃x(x < y1 ∧ . . . ∧ x < yk ∧ u1 < x ∧ . . . ∧ ul < x ∧ x = v1);

ϕ := v1 = v2 ∧ . . . ∧ vm−1 = vm ∧ eqDLO(ψ1, n−m + 1);
}

if k = l = m = 1 ϕ := u1 < v1 ∧ v1 < y1;
if k = l = 1, m = 0 ϕ := u1 < y1;
if l = 0,m = k = 1 ϕ := v1 < y1;
if k = 0,m = l = 1 ϕ := u1 < v1;
}

end

3 An algorithm for quantifier elimination in ACF

The language of fields is L = {+,−, ·, 0, 1}, where + and · are binary function
symbols, − is unary function symbol, and 0 and 1 are constant symbols. The
axioms for fields are:

∀x∀y∀z x + (y + z) = (x + y) + z
∀x x + 0 = 0 + x = x
∀x x + (−x) = (−x) + x = 0
∀x∀y x + y = y + x
∀x∀y∀z x · (y · z) = (x · y) · z
∀x x · 1 = 1 · x = x
∀x∀y x · y = y · x
∀x( x 6= 0 → ∃y x · y = 1)



∀x∀y∀z x · (y + z) = (x · y) + (x · z)
∀x∀y∀z (x + y) · z = (x · z) + (y · z)

We could axiomatize the class of algebraically closed fields by adding, for
each n > 1, the axiom :

∀a0 . . . ∀an∃x anxn + . . . + a0 = 0.

As we have noticed in the introduction, in order to obtain the algorithm for
quantifier elimination in algebraically closed fields, it is sufficient to know how
to eliminate the existential quantifier in the formula of the form

∃x(p1(x) = 0 ∧ . . . ∧ pm(x) = 0 ∧ q1(x) 6= 0 ∧ . . . ∧ qn(x) 6= 0),

where coefficients of pi and qj are polynomials from Z[y1, . . . , yk], yi 6= x.
The crucial part is the polynomial pseudo-division algorithm. We pseudo-
divide s(x) = anxn + s1(x) by p(x) = bmxm + p1(x), where s(x), p(x) ∈
Z[y1, . . . , yk, x], an, bm ∈ Z[y1, . . . , yk], degxs1(x) < n and degxp1(x) < m, by
finding k ∈ N and q(x), r(x) ∈ Z[y1, . . . , yk, x] such that

bk
ms(x) = q(x)p(x) + r(x),

where degxr(x) < degxp(x) ( degx- degree in variable x). We denote by lcx the
leading coefficient in x.

Specification : algorithm pseudo(s(x), p(x)) for pseudo− division
Input : s(x), p(x)
Output : k, q(x), r(x)

begin
r(x) := s(x)
q(x) := 0
k := 0
while degxr(x) > m do

q(x) := bmq(x) + lcx(r(x))xdegxr(x)−m

r(x) := bmr(x)− lcx(r(x))xdegxr(x)−mp(x)
k := k + 1

end
return(k, q(x), r(x))
end.

This algorithm will terminate, because in each step degxr(x) will decrease.
We can prove by induction that in l-th step holds

bl
ms(x) = ql(x)p(x) + rl(x),

so the algorithm really returns pseudo-quotient and pseudo-remainder. We will
use next algorithm several times in the main algorithm:



Specification : algorithm decrease(ψ) which for given formula returns
equivalent disjunction of the conjunctions, where each conjunction contains
only one atomic formula in which x occurs
Input : formula ψ which is the conjunction of atomic formulas
Output ϕ
begin
write the formula ψ in the form
p(x) = 0 ∧ p1(x) = 0 ∧ . . . ∧ pn(x) = 0 ∧ c1 = 0 ∧ . . . cm = 0,
where 1 6 degxp 6 degxpi, degxcj = 0 and p(x) = axl + q(x), degxq < degxp
if n = 0 then ϕ := ψ
else begin

for i = 1, n pseudo(pi(x), p(x))
(pseudo will return pseudo− remainders ri)
ϕ := decrease(a = 0 ∧ q(x) = 0 ∧ p1(x) = 0 ∧ . . . ∧ pn(x) = 0 ∧

c1 = 0 ∧ . . . ∧ cm = 0)
∨

decrease(a 6= 0 ∧ p(x) = 0 ∧ r1(x) = 0 ∧ . . . ∧ rn(x) = 0∧
c1 = 0 ∧ . . . cm = 0)

end
end

Specification : algorthm eqACF (ψ) for quantifier elimination in ACF
Input : formula ψ which is of the form

∃x(p1(x) = 0 ∧ . . . ∧ pn(x) = 0 ∧ q1 6= 0 ∧ . . . ∧ qm(x) 6= 0),
(atomic formulas which don′t contain x are already outside
the scope of the quantifier)

Output : formula ϕ, without quantifiers, equivalent to ψ
begin
if m > 1 replace the conjuction of inequalities with q1(x) . . . qm(x) 6= 0
if n > 1 replace the conjuction of equalities with

decrease(p1(x) = 0 ∧ . . . ∧ pn(x) = 0), transform the obtained
formula to DNF, let the existential quantifier pass through
disjunction, and for each disjunct pull out all atomic
formulas and the negations of atomic formulas, which don′t
contain x, outside the scope of the quantifier, and for each
disjunct proceed algorithm

if ψ ≡ ∃x(anxn + . . . + a0 = 0) then ϕ := a0 = 0 ∨ a1 6= 0 ∨ . . . ∨ an 6= 0
if ψ ≡ ∃x(anxn + . . . + a0 6= 0) then ϕ := a0 6= 0 ∨ a1 6= 0 ∨ . . . ∨ an 6= 0
if ψ ≡ ∃x(p(x) = 0 ∧ q(x) 6= 0) then
begin

write p(x) in the form axn + p1(x), degxp1(x) < n
pseudo(aq(x)n, p(x)) (pseudo will return pseudo− remainder r)
ϕ := (a 6= 0 ∧ eqACF (∃x(r(x) 6= 0)))

∨
(a = 0 ∧ eqACF (∃x(p1(x) = 0 ∧ q(x) 6= 0)))

end



4 Applications of quantifier elimination in ACF

In this section we give elegant proofs for some well-known theorems from
algebraic geometry. All these proofs are based on the fact that ACF has quan-
tifier elimination.

Theorem 2(weak Nullstellensatz) Let K be an algebraically closed field and
f1(X), . . . , fn(X) ∈ K[X]. Then the system of polynomial equations f1(X) =
0, . . . , fn(X) = 0 has a solution in K if and only if 1 /∈< f1(X), . . . , fn(X) >,
where < f1(X), . . . , fn(X) > is the ideal in K[X] generated by f1(X), . . . , fn(X).

Proof. Let 1 /∈< f1(X), . . . , fn(X) >; then the ideal < f1(X), . . . , fn(X) > is
a proper ideal and it is contained in some prime ideal P . We denote by L the
algebraic closure of the fraction field of K[X]/P . (X1 + P, . . . ,Xn + P ) is the
solution of the system f1(X) = 0, . . . , fn(X) = 0 in algebraically closed field
L; thus

L |= ∃x (f1(x) = 0 ∧ . . . ∧ fn(x) = 0).

The formula ∃x (f1(x) = 0∧ . . .∧fn(x) = 0) is equivalent to some quantifier
free formula ϕ, with parameters from K, because theory ACF admits quantifier
elimination. By the construction, K is substructure of L, which means that
for every quantifier free formula ψ and for every a ∈ K holds:

K |= ψ(a) if and only if L |= ψ(a).

We have the following equivalences:

L |= ∃x (f1(x) = 0 ∧ . . . ∧ fn(x) = 0) ⇔ L |= ϕ ⇔

K |= ϕ ⇔ K |= ∃x (f1(x) = 0 ∧ . . . ∧ fn(x) = 0).

The given system has a solution in L, so, by the upper equivalence, it must
have a solution in K. The rest of the proof is obvious. ¤

Let K |= ACF and A ⊆ Kn. We call A constructible, if it is definable
by a formula ϕ, which is finite boolean combination of atomic formulas, i.e.
A = {a ∈ Kn| K |= ϕ(a)}.
Theorem 3(Chevalley’s Theorem) The image of a constructible set under a
polynomial map is constructible.

Proof. Suppose that A = {x ∈ Km | K |= ϕ(x, a)} is a constructible set
and that f : Km → Kn is a polynomial map. B = f [A] = {y ∈ Kn | K |=
∃x(ϕ(x, a) ∧ f(x) = y)} is a definable set. Using the quantifier elimination
in ACF, we can represent B as {y ∈ Kn | K |= ψ(y, b)}, where formula ψ is
without quantifiers and parameters b are among a and coefficients of f . Thus
B is constructible. ¤
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